Publications by authors named "Mandaci S"

Our recent studies revealed that none of the selected widely used force field parameters and molecular dynamics simulation techniques yield structural properties for the intrinsically disordered α-synuclein that are in agreement with various experiments via testing different force field parameters. Here, we extend our studies on the secondary structure properties of the disordered amyloid-β(1-40) peptide in aqueous solution. For these purposes, we conducted extensive replica exchange molecular dynamics simulations and obtained extensive molecular dynamics simulation trajectories from David E.

View Article and Find Full Text PDF

Due to fast aggregation processes of many disordered proteins in neurodegenerative diseases, it is difficult to study their epitope regions at the monomeric and oligomeric levels. Computer simulations complement experiments and have been used to identify the epitope regions of proteins. Residues that adopt β-sheet conformation play a central role in the oligomerization and aggregation mechanisms of such proteins, including α-synuclein, which is at the center of Parkinson's and Alzheimer's diseases.

View Article and Find Full Text PDF

Photosynthetic (Ps) electron transport pathways often contain multiple electron carriers with overlapping functions. Here we focus on two c-type cytochromes (cyt) in facultative phototrophic bacteria of the Rhodobacter genus: the diffusible cyt c2 and the membrane-anchored cyt c(y). In species like R.

View Article and Find Full Text PDF

Cytochrome cbb(3) oxidase is a member of the heme-copper oxidase superfamily that catalyses the reduction of molecular oxygen to the water and conserves the liberated energy in the form of a proton gradient. Comparison of the amino acid sequences of subunit I from different classes of heme-copper oxidases showed that transmembrane helix VIII and the loop between transmembrane helices IX and X contain five highly conserved polar residues; Ser333, Ser340, Thr350, Asn390 and Thr394. To determine the relationship between these conserved amino acids and the activity and assembly of the cbb(3) oxidase in Rhodobacter capsulatus, each of these five conserved amino acids was substituted for alanine by site-directed mutagenesis.

View Article and Find Full Text PDF

Cytochrome cbb (3) oxidase, a member of the heme-copper oxidase superfamily, catalyses the reduction of oxygen to water and generates a proton gradient. Cytochrome c oxidases are characterized by a catalytic subunit (subunit I) containing two hemes and one copper ion ligated by six invariant histidine residues, which are diagnostic of heme-copper oxidases in all type of the heme-copper oxidase superfamily. Alignments of the amino acid sequences of subunit I (FixN or CcoN) of the cbb (3)-type oxidases show that catalytic subunit also contains six non-canonical histidine residues that are conserved in all CcoN subunits of the cbb (3) oxidase, but not the catalytic subunits of other members of heme-copper oxidases superfamily.

View Article and Find Full Text PDF

The c-type cytochromes are haemoproteins that are subunits or physiological partners of electron transport chain components, like the cytochrome bc(1) complex or the cbb(3)-type cytochrome c oxidase. Their haem moieties are covalently attached to the corresponding apocytochromes via a complex post-translational maturation process. During our studies of cytochrome biogenesis, we uncovered a novel class of mutants that are unable to produce ornithine lipid and that lack several c-type cytochromes.

View Article and Find Full Text PDF

We have recently established that the facultative phototrophic bacterium Rhodobacter sphaeroides, like the closely related Rhodobacter capsulatus species, contains both the previously characterized mobile electron carrier cytochrome c2 (cyt c2) and the more recently discovered membrane-anchored cyt cy. However, R. sphaeroides cyt cy, unlike that of R.

View Article and Find Full Text PDF

The ubihydroquinone-cytochrome c oxidoreductase (or the cytochrome bc1 complex) from Rhodobacter capsulatus is composed of the Fe-S protein, cytochrome b, and cytochrome c1 subunits encoded by petA(fbcF), petB(fbcB), and petC(fbcC) genes organized as an operon. In the work reported here, petB(fbcB) was split genetically into two cistrons, petB6 and petBIV, which encoded two polypeptides corresponding to the four amino-terminal and four carboxyl-terminal transmembrane helices of cytochrome b, respectively. These polypeptides resembled the cytochrome b6 and su IV subunits of chloroplast cytochrome b6f complexes, and together with the unmodified subunits of the cytochrome bc1 complex, they formed a novel enzyme, named cytochrome b6c1 complex.

View Article and Find Full Text PDF

The cytochrome (cyt) c1 heme of the ubihydroquinone:cytochrome c oxidoreductase (bc1 complex) is covalently attached to two cysteine residues of the cyt c1 polypeptide chain via two thioether bonds, and the fifth and sixth axial ligands of its iron atom are histidine (H) and methionine (M), respectively. The latter residue is M183 in Rhodobacter capsulatus cyt c1, and previous mutagenesis studies revealed its critical role for the physicochemical properties of cyt c1 [Gray, K. A.

View Article and Find Full Text PDF

We describe the isolation, cloning and expression of a 2.8 kb promoter fragment of the Blec4 gene from pea (Pisum sativum cv. Alaska) and demonstrate that it is capable of directing the expression of the beta-glucuronidase coding region to the developing epidermal tissue of vegetative and floral shoot apices of transgenic alfalfa (Medicago sativa cv.

View Article and Find Full Text PDF