Publications by authors named "Manda Curic"

Article Synopsis
  • - The study explores the halogenation of C-H bonds in azobenzenes using -halosuccinimides as the halogen source, executed through mechanochemical methods like grinding, both neat and with liquids.
  • - Halogenation efficiency varies with different azobenzene structures and can occur without or with palladium (Pd) catalysts, showcasing the selective nature of the process.
  • - The research employs advanced techniques like in situ Raman and ex situ NMR spectroscopy, along with PXRD analysis, to understand reaction dynamics and product characterization, revealing that substituents significantly affect halogenation time and mechanism.
View Article and Find Full Text PDF

Palladium C-H bond activation in azobenzenes with R and R at positions of the phenyl rings (R = NMe, R = H (); R = NMe, R = Cl (); R = NMe, R = I (); R = NMe, R = NO (); R = H, R = H ()) and their monopalladated derivatives, using -[PdCl(DMF)], has been studied in detail by H NMR spectroscopy in -dimethylformamide- (DMF-) at room temperature; the same processes have been monitored in parallel via time-resolved UV-vis spectroscopy in DMF at different temperatures and pressures. The final goal was to achieve, from a kinetico-mechanistic perspective, a complete insight into previously reported reactivity results. The results suggest the operation of an electrophilic concerted metalation-deprotonation mechanism for both the mono- and dipalladation reactions, occurring from the coordination compound and the monopalladated intermediates, respectively.

View Article and Find Full Text PDF

Mechanism of C-H bond activation by various Pd catalysts under milling conditions has been studied by in situ Raman spectroscopy. Common Pd precursors, that is PdCl , [Pd(OAc) ] , PdCl (MeCN) and [Pd(MeCN) ][BF ] , have been employed for the activation of one or two C-H bonds in an unsymmetrical azobenzene substrate. The C-H activation was achieved by all used Pd precursors and their reactivity increases in the order [Pd(OAc) ] View Article and Find Full Text PDF

N-H bond activation of gaseous ammonia is achieved at room temperature in a reversible solvent-free reaction using a solid dicyclopalladated azobenzene complex. Monitoring of the gas-solid reaction in real-time by in situ solid-state Raman spectroscopy enabled a detailed insight into the stepwise activation pathway proceeding to the final amido complex via a stable diammine intermediate. Gas-solid synthesis allowed for isolation and subsequent structural characterization of the intermediate and the final amido product, which presents the first dipalladated complex with the Pd-(μ-NH)-Pd bridge.

View Article and Find Full Text PDF

Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.

View Article and Find Full Text PDF

In situ Raman spectroscopy was employed to study the course of a mechanochemical nucleophilic substitution on a carbonyl group. We describe evidence of base catalysis, akin to catalysis in solution, achieved by liquid-assisted grinding.

View Article and Find Full Text PDF

The first direct mechanochemical transition-metal-mediated activation of strong phenyl C-H bonds is reported. The mechanochemical procedure, resulting in cyclopalladated complexes, is quantitative and significantly faster than solution synthesis and allows highly regioselective activation of two C-H bonds by palladium(II) acetate in asymmetrically substituted azobenzene. Milling is monitored by in situ solid-state Raman spectroscopy which in combination with quantum-chemical calculations enabled characterization of involved reaction species, direct insight into the dynamics and reaction pathways, as well as the optimization of a milling process.

View Article and Find Full Text PDF

Two series of new dicyclopalladated complexes {(DMF)PdCl(μ-R(1)C6H3N═NC6H3R(2))PdCl(DMF)} of 4,4'-functionalized azobenzenes with substituents of varying electron-donating or electron-withdrawing strength (R(1) = H, NMe2; R(2) = H, Cl, Br, I, OMe, PhNH, CO2H, SO3Na, or NO2) have been synthesized and fully characterized. (1)H NMR spectroscopy along with the ESI mass spectrometry unambiguously identified the new complexes in the solution, and their solid-state structures were determined by X-ray crystallography. The presence of easily exchangeable solvent ligands was confirmed by (1)H NMR spectroscopy, X-ray experiments, and ESI mass spectrometry.

View Article and Find Full Text PDF

Solid-state reactions of dicyclopalladated azobenzenes and triphenylphosphine lead to the thermodynamically favorable bridged complexes. It was demonstrated for the first time that very complex molecular dynamics involving a series of structural transformations is also feasible in the solid state.

View Article and Find Full Text PDF

Two types of Pd(ii) azobenzene/bipyridine complexes with unusual coordination mode of azobenzenes, PdCl{(mu-Cl)(mu-R(1)C(6)H(3)N=NC(6)H(3)R(2))}Pd(bpy) 1a-4a and [(bpy)PdCl(mu-NH(2)C(6)H(3)N=NC(6)H(4))Pd(bpy)]Cl 3b were formed by the reaction of dicyclopalladated azobenzenes (DMF)PdCl(mu-R(1)C(6)H(3)N=NC(6)H(3)R(2))PdCl(DMF) with excess of bpy, where bpy=2,2'-bipyridine; R(2)=H and R(1)=H (1), CH(3) (2), NH(2) (3) or R(1)=N(CH(3))(2) and R(2)=NO(2) (4). Neutral species 1a-4a were obtained in acetone, while in DMSO or MeOH the ionic complex 3b was produced. When dissolved, 3b decomposes to 3a and free bpy; however in DMSO upon addition of bpy 3b crystallizes again.

View Article and Find Full Text PDF

A series of doubly cyclopalladated complexes of azobenzene and its unsymmetrical substituted derivatives, namely, {LPdCl(mu-AZB)LPdCl}, where AZB is azobenzene, 4-methylazobenzene, 4-aminoazobenzene, or 4-(dimethylamino)-4'-nitroazobenzene, while L is N,N-dimethylformamide, dimethylsulfoxide, or pyridine, have been prepared. Their structural and spectroscopic properties were determined by X-ray diffraction analysis as well as by (1)H NMR, IR, UV-vis, and fluorimetric studies. Experimental results were rationalized by quantum chemical calculations.

View Article and Find Full Text PDF

A new class of doubly cyclopalladated complexes, {PdCl(dmf)}2(mu-azb) (1) and {PdCl(dmf)}2(mu-aazb) (2), has been prepared in dimethylformamide (dmf) by reaction of azobenzene (azb) and 4-aminoazobenzene (aazb), respectively, with an excess of PdCl2(CH3CN)2 complex. Recrystallization of 1 and 2 in dimethyl sulfoxide (dmso) yields complexes {PdCl(dmso)}2(mu-azb) (3) and {PdCl(dmso)}2(mu-aazb) (4), respectively. The crystal structures of 1 and 4 have been determined by X-ray diffraction.

View Article and Find Full Text PDF