Sheng Wu Gong Cheng Xue Bao
September 2021
L-asparaginase hydrolyzes L-asparagine to produce L-aspartic acid and ammonia. It is widely distributed in microorganisms, plants and serum of some rodents, and has important applications in the pharmaceutical and food industries. However, the poor thermal stability, low catalytic efficiency and low yield hampered the further application of L-asparaginase.
View Article and Find Full Text PDFBackground: Acetoin (AC) and 2,3-butanediol (2,3-BD) as highly promising bio-based platform chemicals have received more attentions due to their wide range of applications. However, the non-efficient substrate conversion and mutually transition between AC and 2,3-BD in their natural producing strains not only led to a low selectivity but also increase the difficulty of downstream purification. Therefore, synthetic engineering of more suitable strains should be a reliable strategy to selectively produce AC and 2,3-BD, respectively.
View Article and Find Full Text PDF9α-Hydroxy-4-androstene-3,17-dione (9-OH-AD) is one of the significant intermediates for the preparation of β-methasone, dexamethasone, and other steroids. In general, the key enzyme that enables the biotransformation of 4-androstene-3,17-dione (AD) to 9-OH-AD is 3-phytosterone-9α-hydroxylase (KSH), which consists of two components: a terminal oxygenase (KshA) and ferredoxin reductase (KshB). The reaction is carried out with the concomitant oxidation of NADH to NAD.
View Article and Find Full Text PDF