Publications by authors named "Mance D"

Gallia-alumina (Ga,Al)O spinel-type solid solution nanoparticle catalysts for propane dehydrogenation (PDH) were prepared with four nominal Ga : Al atomic ratios (1 : 6, 1 : 3, 3 : 1, 1 : 0) using a colloidal synthesis approach. The structure, coordination environment and distribution of Ga and Al sites in these materials were investigated by X-ray diffraction, X-ray absorption spectroscopy (Ga K-edge) as well as Al and Ga solid state nuclear magnetic resonance. The surface acidity (Lewis or Brønsted) was probed using infrared spectroscopy with pyridine and 2,6-dimethylpyridine probe molecules, complemented by element-specific insights (Ga or Al) from dynamic nuclear polarization surface enhanced cross-polarization magic angle spinning N{Al} and N{Ga} coupling mediated heteronuclear multiple quantum correlation NMR experiments using N-labelled pyridine as a probe molecule.

View Article and Find Full Text PDF

During the last years, the report of the occurrence of waterborne disease symptoms related to non-enteric pathogens has increased, without any record of higher levels of indicator bacteria ( and intestinal enterococci). Therefore, the use of current indicators is not always adequate when assessing the overall potential health risk and the inclusion of additional parameters needs to be examined. This paper reports on the incidence and levels of at 258 locations in Primorje-Gorski Kotar County (Croatia) recorded by official bathing water quality monitoring, as well as supplemental monitoring carried out at the two most frequented beaches in the City of Rijeka.

View Article and Find Full Text PDF
Article Synopsis
  • * The interferometer operated stably and reliably throughout the mission, achieving extremely low noise levels that exceeded performance expectations.
  • * The report also provides insights into the sensitivity and performance limits of the sensor at very low frequencies, particularly above 200 mHz.
View Article and Find Full Text PDF

The catalytic performances of molecular and silica-supported molybdenum oxo alkylidene species bearing anionic O ligands [OR, OTPP, OHMT - where OR = OC(CF), OTPP = 2,3,5,6-tetraphenylphenoxy, OHMT = hexamethylterphenoxy] with different σ-donation abilities and sizes are evaluated in the metathesis of both internal and terminal olefins. Here, we show that the presence of the anionic nonafluoro--butoxy X ligand in Mo(O){═CH-4-(MeO)CH}(THF){X} (; X = OR) significantly increases the catalytic performances in the metathesis of both terminal and internal olefins. Its silica-supported equivalent displays slightly lower activity, albeit with improved stability.

View Article and Find Full Text PDF

Background: Schizophrenia is a severe illness whose clinical course is characterized by various numbers of psychotic episodes (PE). The neurotoxic hypothesis (NH) of schizophrenia assumes that psychosis is biologically toxic. The aim of the study was to investigate whether schizophrenia patients (SP) with multiple PE have greater grey matter volume (GMV) reduction compared to SP with fewer PE.

View Article and Find Full Text PDF

Electrostatic actuation of a free-floating test-mass was tested in the Laser Interferometer Space Antenna (LISA) Pathfinder mission, and it will be integrated into the LISA. We have investigated the LISA Pathfinder actuation accuracy with respect to the precision of fractional digits in the field programmable gate array (FPGA) code of actuation electronics. The LISA Pathfinder data showed that the rounding errors in the FPGA code result in an erroneous force that contaminated the main mission observable, and this error was compensated in the post-processing of the LISA Pathfinder data.

View Article and Find Full Text PDF

Supported metal nanoparticles are a very large class of heterogeneous catalysts. While detailed structure-activity relationships require a molecular-level description of the interactions between the metal surfaces and ligands/substrates, this description is rarely accessible. Thus, most insights are derived from models based on single crystals.

View Article and Find Full Text PDF

The Laser Interferometer Space Antenna Pathfinder (LPF) main observable, labeled Δg, is the differential force per unit mass acting on the two test masses under free fall conditions after the contribution of all non-gravitational forces has been compensated. At low frequencies, the differential force is compensated by an applied electrostatic actuation force, which then must be subtracted from the measured acceleration to obtain Δg. Any inaccuracy in the actuation force contaminates the residual acceleration.

View Article and Find Full Text PDF

Dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP-SENS) has emerged as a powerful characterization tool in material chemistry and heterogeneous catalysis by dramatically increasing, by up to 2 orders of magnitude, the NMR signals associated with surface sites. DNP-SENS mostly relies on using exogenous polarizing agents (PAs), typically dinitroxyl radicals, to boost the NMR signals. However, the PAs may interact with the surface or even react with surface sites, thus leading to loss or quenching of DNP enhancements.

View Article and Find Full Text PDF

Heterogeneous catalysts fulfill vital roles in industrial processes; however, the nature of the catalytic surfaces, typically either containing a low abundance of active sites or being amorphous in nature, leads to difficulties when attempting to study the structure of the active sites. In this work, we show how making use of fast MAS ssNMR allows one to efficiently detect well-resolved H-detected spectra of heterogeneous catalysts. This approach was applied to study the structure of surface species resulting from the grafting of VO(OPr) onto a partially dehydroxylated silica using the surface organometallic chemistry approach.

View Article and Find Full Text PDF

Despite the importance of the heterogeneous tungsten-oxo-based olefin metathesis catalyst (WO/SiO) in industry, understanding of its initiation mechanism is still very limited. It has been proposed that reduced W(IV)-oxo surface species act as precatalysts. In order to understand the reactivity and initiation mechanism of surface W(IV)-oxo species, we synthesized a well-defined silica-supported W(IV)-oxo species, (≡SiO)WO(OBuF)(py) (; OBuF = OC(CH)(CF); py = pyridine), via surface organometallic chemistry (SOMC).

View Article and Find Full Text PDF

We report on the results of the LISA Pathfinder (LPF) free-fall mode experiment, in which the control force needed to compensate the quasistatic differential force acting on two test masses is applied intermittently as a series of "impulse" forces lasting a few seconds and separated by roughly 350 s periods of true free fall. This represents an alternative to the normal LPF mode of operation in which this balancing force is applied continuously, with the advantage that the acceleration noise during free fall is measured in the absence of the actuation force, thus eliminating associated noise and force calibration errors. The differential acceleration noise measurement presented here with the free-fall mode agrees with noise measured with the continuous actuation scheme, representing an important and independent confirmation of the LPF result.

View Article and Find Full Text PDF

Grafting a molybdenum oxo alkylidene on silica (partially dehydroxylated at 700 °C) affords the first example of a well-defined silica-supported Mo oxo alkylidene, which is an analogue of the putative active sites in heterogeneous Mo-based metathesis catalysts. In contrast to its tungsten analogue, which shows poor activity towards terminal olefins because of the formation of a stable off-cycle metallacyclobutane intermediate, the Mo catalyst shows high metathesis activity for both terminal and internal olefins that is consistent with the lower stability of Mo metallacyclobutane intermediates. This Mo oxo metathesis catalyst also outperforms its corresponding neutral silica-supported Mo and W imido analogues.

View Article and Find Full Text PDF

Unlabelled: By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars' surface the SEIS (eismic xperiment for nternal tructure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods.

View Article and Find Full Text PDF

The β-barrel assembly machinery (BAM) is a pentameric complex (BamA-E), which catalyzes the essential process of β-barrel protein insertion into the outer membrane of E. coli. Thus far, a detailed understanding of the insertion mechanism has been elusive but recent results suggest that local protein motion, in addition to the surrounding membrane environment, may be of critical relevance.

View Article and Find Full Text PDF

Objective: A few studies focused on determinants of apical periodontitis other than technical or biological factors. This research aimed to investigate to what extent socio-economic and health status can predict apical periodontitis in adult patients.

Subjects And Methods: The cross-sectional study included 599 adult patients.

View Article and Find Full Text PDF

The exchange () interaction of organic biradicals is a crucial factor controlling their physiochemical properties and potential applications and can be modulated by changing the nature of the linker. In the present work, we for the first time demonstrate the effect of chiral configurations of radical parts on the values of trityl-nitroxide (TN) biradicals. Four diastereoisomers (TNT, TNT, TNL and TNL) of TN biradicals were synthesized and purified by the conjugation of a racemic (/) nitroxide with the racemic (/) trityl radical l-proline.

View Article and Find Full Text PDF

In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20  μHz. The Letter presents the measured differential acceleration noise figure, which is at (1.

View Article and Find Full Text PDF

Significant progress has been made in obtaining structural insight into the assembly of the β-barrel assembly machinery complex (BAM). These crystallography and electron microscopy studies used detergent as a membrane mimetic and revealed structural variations in the central domain, BamA, as well as in the lipoprotein BamC. We have used cellular solid-state NMR spectroscopy to examine the entire BamABCDE complex in native outer membranes and obtained data on the BamCDE subcomplex in outer membranes, in addition to synthetic bilayers.

View Article and Find Full Text PDF

Solid-state NMR (ssNMR) can provide structural information at the most detailed level and, at the same time, is applicable in highly heterogeneous and complex molecular environments. In the last few years, ssNMR has made significant progress in uncovering structure and dynamics of proteins in their native cellular environments [1-4]. Additionally, ssNMR has proven to be useful in studying large biomolecular complexes as well as membrane proteins at the atomic level [5].

View Article and Find Full Text PDF

The segregation of cellular surfaces in heterogeneous patches is considered to be a common motif in bacteria and eukaryotes that is underpinned by the observation of clustering and cooperative gating of signaling membrane proteins such as receptors or channels. Such processes could represent an important cellular strategy to shape signaling activity. Hence, structural knowledge of the arrangement of channels or receptors in supramolecular assemblies represents a crucial step towards a better understanding of signaling across membranes.

View Article and Find Full Text PDF

We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.

View Article and Find Full Text PDF

A combination of solid-state NMR techniques supported by EPR and SEM-EDX experiments was used to localize different carbon species (coke) in commercial fluid catalytic cracking catalysts. Aliphatic coke species formed during the catalytic process and aromatic coke species deposited directly from the feedstock respond differently to dynamic nuclear polarization signal enhancement in integral and crushed FCC particles, indicating that aromatic species are mostly concentrated on the outside of the catalyst particles, whereas aliphatic species are also located on the inside of the FCC particles. The comparison of solid-state NMR data with and without the DNP radical at low and ambient temperature suggests the proximity between aromatic carbon deposits and metals (mostly iron) on the catalyst surface.

View Article and Find Full Text PDF

The crystal structure of a designed phospholipid-inspired amphiphilic phosphopeptide at 0.8 Å resolution is presented. The phosphorylated β-hairpin peptide crystallizes to form a lamellar structure that is stabilized by intra- and intermolecular hydrogen bonding, including an extended β-sheet structure, as well as aromatic interactions.

View Article and Find Full Text PDF

To understand the dynamic nuclear polarization (DNP) enhancements of biradical polarizing agents, the magnetic resonance parameters need to be known. We describe a tailored EPR approach to accurately determine electron spin-spin coupling parameters using a combination of standard (9 GHz), high (95 GHz) and ultra-high (275 GHz) frequency EPR. Comparing liquid- and frozen-solution continuous-wave EPR spectra provides accurate anisotropic dipolar interaction D and isotropic exchange interaction J parameters of the DNP biradical AMUPol.

View Article and Find Full Text PDF