Background: The concurrent circulation of SARS-CoV-2 with other respiratory viruses is unstoppable and represents a new diagnostic reality for clinicians and clinical microbiology laboratories. Multiplexed molecular testing on automated platforms that focus on the simultaneous detection of multiple respiratory viruses in a single tube is a useful approach for current and future diagnosis of respiratory infections in the clinical setting.
Methods: Two time periods were included in the study: from February to April 2022, an early 2022 period, during the gradual lifting of COVID-19 prevention measures in the country, and from October 2022 to April 2023, the 2022/23 respiratory infections season.
This study assesses the circulation of human respiratory syncytial virus (HRSV) genotypes before, during, and toward the end of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in children and determines the influence of the pandemic on HRSV circulation patterns and evolution. Phylogenetic analysis of the hypervariable glycoprotein G gene was performed on 221/261 (84.7%) HRSV-positive samples and shows two separated clusters, one belonging to HRSV-A (129/221) and another to HRSV-B (92/221).
View Article and Find Full Text PDF