Publications by authors named "Manaye K"

Harmaline is one of the β-carboline derivative compounds that is widely distributed in the food chain and human tissues. Harmine, a dehydrogenated form of harmaline, appeared to have a higher concentration in the brain, and appeared to be elevated in essential tremor (ET) and Parkinson's disease. Exogenous harmaline exposure in high concentration has myriad consequences, including inducing tremor, and causing neurodegeneration of Purkinje cells in the cerebellum.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is characterized by the loss of dopamine-producing neurons, primarily due to aging, with both environmental and genetic factors playing a role in its development.
  • Research has shown that butyrate (BUT) and dihydromyricetin (DHM) can protect neuroblastoma cells from neurotoxic effects caused by salsolinol (SALS), indicating their potential as neuroprotectants in PD.
  • The protective effects of DHM and BUT work synergistically but can be inhibited by specific GABA antagonists, suggesting they operate through overlapping and distinct mechanisms; however, more research is needed to confirm these findings in living organisms.
View Article and Find Full Text PDF

Recent reports show coagulopathy as a potential complication and poorer outcome of coronavirus disease 2019 (COVID-19), especially in those with comorbid conditions such as diabetes and hypertension as thrombosis could result in stroke and heart attacks. Indeed, cardiovascular complications in COVID-19 account for 40% of mortality. Although there is no standard treatment protocol or guidelines for COVID-19, it is a common practice to use anti-inflammatory corticosteroids and anti-coagulants, especially for severe COVID-19 patients.

View Article and Find Full Text PDF

Objective: This study evaluated human Blood Oxygen Level-Dependent (BOLD) responses in primary and higher-order olfactory regions of older adults, using odor memory and odor identification tasks. The goal was to determine which olfactory and memory regions of interest are more strongly engaged in older populations comparing these two odor training tasks.

Methods: Twelve adults 55-75 years old (75% females) without intranasal or major neurological disorders performed repetitive odor memory and identification tasks using a 3-tesla magnetic resonance scanner.

View Article and Find Full Text PDF

With the aging population growing and the incidence of neurodegenerative diseases on the rise, the researchers in the field are yet more urgently challenged to slow and/or reverse the devastating consequences of such progression. The challenge is further enforced by psychiatric co-morbid conditions, particularly the feeling of despair in these population. Fortunately, as our understanding of the neurobiological substrates of maladies affecting the central nervous system increases, more therapeutic options are also presented.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) affects over 5 million Americans and is the only top-10 cause of death without a known cure or way to slow its progression, highlighting the need for early detection methods.
  • Research indicates that changes in smell function may precede cognitive decline related to AD by decades, yet olfactory testing is not a standard practice in neurology.
  • Studies are exploring the link between Apolipoprotein E (ApoE) ε4 and olfactory dysfunction in late-onset AD, aiming to enhance early diagnosis and treatment through olfactory assessments.
View Article and Find Full Text PDF

Orexin/hypocretin-containing neurons in lateral hypothalamus (LH) are implicated in the neurobiology of nicotine addiction. However, the neuroanatomical relationships between orexin-neurons/nerve fibers and nicotine-activated cells within the reward-addiction neurocircuitry is not known. In the present study in mice, we first used c-Fos immunohistochemistry to identify CNS cells stimulated by an acute single injection of nicotine (NIC, 2 mg/kg, IP).

View Article and Find Full Text PDF

The detrimental effects of heavy drinking and smoking are multiplied when the two are combined. Treatment modalities for each and especially for the combination are very limited. Although in low concentration, alcohol and nicotine, each may have beneficial effects including neuroprotection, their combination, instead of providing additive protection, may actually lead to toxicity in cell cultures.

View Article and Find Full Text PDF

Changes in Cu homeostasis have been implicated in multiple neurodegenerative diseases. Factors controlling and regulating the distribution of Cu in the brain remain largely unknown. We have previously reported that a sub-set of astrocytes in the subventricular zone (SVZ) contain Cu-rich aggregates.

View Article and Find Full Text PDF

The sensory experience of smoking is a key component of nicotine addiction known to result, in part, from stimulation of nicotinic acetylcholine receptors (nAChRs) at peripheral sensory nerve endings. Such stimulation of nAChRs is followed by activation of neurons at multiple sites in the mesocorticolimbic reward pathways. However, the neurochemical profiles of CNS cells that mediate the peripheral sensory impact of nicotine remain unknown.

View Article and Find Full Text PDF

While primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide, it still does not have a clear mechanism that can explain all clinical cases of the disease. Elevated IOP is associated with increased accumulation of extracellular matrix (ECM) proteins in the trabecular meshwork (TM) that prevents normal outflow of aqueous humor (AH) and has damaging effects on the fine mesh-like lamina cribrosa (LC) through which the optic nerve fibers pass. Applying a pathway analysis algorithm, we discovered that an elevated level of TGFβ observed in glaucoma-affected tissues could lead to pro-fibrotic pathway activation in TM and in LC.

View Article and Find Full Text PDF

Direct actions of nicotine in the CNS appear to be essential for its reinforcing properties. However, activation of nicotinic acetylcholine receptors (nAChRs) on afferent sensory nerve fibers is an important component of addiction to, and withdrawal from, cigarette smoking. The aim of the present study was to identify the neuroanatomical substrates activated by the peripheral actions of nicotine and to determine whether these sites overlap brain structures stimulated by direct actions of nicotine.

View Article and Find Full Text PDF

Background: Though the precise cause(s) of Alzheimer's disease (AD) remain unknown, there is strong evidence that decreased clearance of β-amyloid (Aβ) from the brain can contribute to the disease. Therapeutic strategies to promote natural Aβ clearance mechanisms, such as the protein apolipoprotein-E (APOE), hold promise for the treatment of AD. The amount of APOE in the brain is regulated by nuclear receptors including retinoid X receptors (RXRs).

View Article and Find Full Text PDF

Amyloid-β protein (Aβ) accumulation is one of the major hallmarks of Alzheimer's disease (AD) and plays a crucial role in its pathogenesis. Cellular models whereby amyloid precursor protein (APP) is highly expressed are commonly used to test the efficacy of novel neuroprotective compounds. In addition to Aβ, it is known that mutation in the protein presenilin contributes to early onset AD.

View Article and Find Full Text PDF

Cells in the locus coeruleus (LC) constitute the sole source of norepinephrine (NE) in the brain and change their discharge rates according to vigilance state. In addition to its well established role in vigilance, NE affects synaptic plasticity in the postnatal critical period (CP) of development. One form of CP synaptic plasticity affected by NE results from monocular occlusion, which leads to physiological and cytoarchitectural alterations in central visual areas.

View Article and Find Full Text PDF

Preclinical as well as limited clinical studies indicate that ketamine, a non-competitive glutamate N-methyl-D-aspartate (NMDA) receptor antagonist, may exert a quick and prolonged antidepressant effect. It has been postulated that ketamine action is due to inhibition of NMDA and stimulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. Here, we sought to determine whether ketamine would exert antidepressant effects in Wistar-Kyoto (WKY) rats, a putative animal model of depression and whether this effect would be associated with changes in AMPA/NMDA receptor densities in the hippocampus.

View Article and Find Full Text PDF

Microscopic findings in Alzheimer's disease (AD) at autopsy include a wide cortical distribution of beta amyloid (Aβ)-containing plaques and diminished numbers of pyramidal neurons in CA1 of hippocampus and tyrosine hydroxylase-positive (TH+) neurons in the locus coeruleus (LC). To better understand the neuropathology underlying cognitive decline in AD, we analyzed the AD-type neuropathology in brains of triple transgenic (3×Tg) mice harboring mutations for APP(swe), PS1(M146V), and tau(P301L). Histochemical and immunohistochemical staining and computerized stereology were carried out in age-matched young, early middle age, and late middle age 3×Tg mice.

View Article and Find Full Text PDF

The von Economo neurons (VENs) are large bipolar neurons located in the frontoinsular cortex (FI) and limbic anterior (LA) area in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week postconception, with numbers increasing during the first 8 months after birth.

View Article and Find Full Text PDF

Cannabinoids have neuroprotective effects that are exerted primarily through cannabinoid CB1 receptors in the brain. This study characterized CB1 receptor distribution in the double transgenic (dtg) APP(swe)/PS1(ΔE9) mouse model for Alzheimer's disease. Immunohistochemical labeling of CB1 protein in non-transgenic mice revealed that CB1 was highly expressed in the hippocampus, with the greatest density of CB1 protein observed in the combined hippocampal subregions CA2 and CA3 (CA2/3).

View Article and Find Full Text PDF

Quantitative microanalysis of brains from patients with Alzheimer's disease (AD) find neuronal loss and neuroinflammation in structures that control cognitive function. Though historically difficult to recapitulate in experimental models, several groups have recently reported that by middle-age, transgenic mice that co-express high levels of two AD-associated mutations, amyloid-β protein precursor (AβPP(swe)) and presenilin 1 (PS1(ΔE9)), undergo significant AD-type neuron loss in sub-cortical nuclei with heavy catecholaminergic projections to the hippocampal formation. Here we report that by 13 months of age these dtg AβPP(swe)/PS1(ΔE9) mice also show significant loss of pyramidal neuron in a critical region for learning and memory, the CA1 subregion of hippocampus, as a direct function of amyloid-β (Aβ) aggregation.

View Article and Find Full Text PDF

Although prion diseases are most commonly modeled using the laboratory mouse, the diversity of prion strains, behavioral testing and neuropathological assessments hamper our collective understanding of mouse models of prion disease. Here we compared several commonly used murine strains of prions in C57BL/6J female mice in a detailed home cage behavior detection system and a systematic study of pathological markers and neurotransmitter systems. We observed that mice inoculated with RML or 139A prions develop a severe hyperactivity phenotype in the home cage.

View Article and Find Full Text PDF

The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range.

View Article and Find Full Text PDF

The locus coeruleus (LC) is a dense cluster of neurons that projects axons throughout the neuroaxis and is located in the rostral pontine tegmentum extending from the level of the inferior colliculus to the motor nucleus of the trigeminal nerve. LC neurons are lost in the course of several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. In this study we used Nissl staining and tyrosine hydroxylase (TH) immunoreactivity to compare the human LC with that of closely related primate species, including great and lesser apes, and macaque monkeys.

View Article and Find Full Text PDF

Increasing evidence suggests that depression may be both a cause and consequence of neurological disorders such as Alzheimer's disease (AD), and that anti-depressants could provide an alternative strategy to current AD therapies. Association of side effect and herbal-drug interaction with conventional anti-depressant and St. John's wort warrant investigating new anti-depressant drugs.

View Article and Find Full Text PDF

The observed high incidence of smoking amongst depressed individuals has led to the hypothesis of 'self medication" with nicotine in some of these patients. The inbred Wistar-Kyoto (WKY) rats exhibit depressive-like characteristics as evidenced by exaggerated immobility in the forced swim test (FST). One aim of this study was to investigate whether nicotine may have an antidepressant-like effect in these animals.

View Article and Find Full Text PDF