Publications by authors named "Manavendra Pathania"

Effective inhibitory synaptic transmission requires efficient stabilization of GABA(A) receptors (GABA(A)Rs) at synapses, which is essential for maintaining the correct excitatory-inhibitory balance in the brain. However, the signaling mechanisms that locally regulate synaptic GABA(A)R membrane dynamics remain poorly understood. Using a combination of molecular, imaging, and electrophysiological approaches, we delineate a GIT1/βPIX/Rac1/PAK signaling pathway that modulates F-actin and is important for maintaining surface GABA(A)R levels, inhibitory synapse integrity, and synapse strength.

View Article and Find Full Text PDF

An array of signals regulating the early stages of postnatal subventricular zone (SVZ) neurogenesis has been identified, but much less is known regarding the molecules controlling late stages. Here, we investigated the function of the activity-dependent and morphogenic microRNA miR-132 on the synaptic integration and survival of olfactory bulb (OB) neurons born in the neonatal SVZ. In situ hybridization revealed that miR-132 expression occurs at the onset of synaptic integration in the OB.

View Article and Find Full Text PDF

The maturation of young neurons is regulated by complex mechanisms and dysregulation of this process is frequently found in neurodevepmental disorders. MicroRNAs have been implicated in several steps of neuronal maturation including dendritic and axonal growth, spine development, and synaptogenesis. We demonstrate that one brain-enriched microRNA, miR-137, has a significant role in regulating neuronal maturation.

View Article and Find Full Text PDF

Neurogenesis is continually occurring in two regions within the mammalian central nervous system (CNS) and increasing evidence suggests that it is important for selective learning and memory. How this plasticity is maintained in isolated niches within mature networks has been extensively studied in recent years, and a large body of evidence has accumulated describing many different regulatory factors and points of regulation. In this review, we attempt to organize the current research by summarizing findings affecting early neurogenesis: during proliferation, fate commitment and migration, versus late neurogenesis: including dendritic development, synaptic integration, and survival.

View Article and Find Full Text PDF