Measuring single-cell genomic profiles at different timepoints enables our understanding of cell development. This understanding is more comprehensive when we perform an integrative analysis of multiple measurements (or modalities) across various developmental stages. However, obtaining such measurements from the same set of single cells is resource-intensive, restricting our ability to study them integratively.
View Article and Find Full Text PDFMultiomic single-cell data allow us to perform integrated analysis to understand genomic regulation of biological processes. However, most single-cell sequencing assays are performed on separately sampled cell populations, as applying them to the same single-cell is challenging. Existing unsupervised single-cell alignment algorithms have been primarily benchmarked on coassay experiments.
View Article and Find Full Text PDF