Operando optical microscopy enables imaging at the interface between the Zn electrode and the electrolyte of 1 M ZnSO(aq) in the symmetrical Zn/Zn cells assembled as the pouch cells with the mechanical load of 0.8 MPa. The imaging was executed during cycling of Zn plating and stripping at the different current densities of 0.
View Article and Find Full Text PDFUsing coarse-grained dissipative particle dynamics (DPD) simulations, we systematically study the effect of surface heterogeneity on surfactant adsorption. Here we investigate the adsorption and aggregation of surfactants on hydrophobic stripes crossing each other perpendicularly (i.e.
View Article and Find Full Text PDFSelf-assembly is widely seen as the method of choice for the bottom-up manufacture of supra-colloidal aggregates. Surfactants have been used extensively to appreciate qualitatively and quantify driving forces and methodologies for controlling self-assembling processes and the resultant self-assembled aggregates. However, not much is known regarding self-assembled surfactant aggregates formed on heterogeneous surfaces.
View Article and Find Full Text PDFThe adsorption and self-assembly of surfactants are ubiquitous processes in several technological applications, including the manufacture of nano-structured materials using bottom-up strategies. Although much is known about the adsorption of surfactants on homogeneous flat surfaces from experiments, theory, and simulations, limited information is available, in quantifiable terms, regarding the adsorption of surfactants on surfaces with chemical and/or morphological heterogeneity. In an effort to fill this knowledge gap, we report here results obtained using equilibrium dissipative particle dynamics (DPD) simulations for the adsorption of model surfactants onto patterned flat surfaces (i.
View Article and Find Full Text PDF