Enteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of the endocannabinoid receptor signaling pathway, JNK, and FOXO1, known to mediate endodermal development and/or hormone production, together with directed differentiation of human ISCs from the duodenum and rectum.
View Article and Find Full Text PDFSkeletal progenitor/stem cells (SSCs) play a critical role in postnatal bone growth and maintenance. Telomerase (Tert) activity prevents cellular senescence and is required for maintenance of stem cells in self-renewing tissues. Here we investigated the role of mTert-expressing cells in postnatal mouse long bone and found that mTert expression is enriched at the time of adolescent bone growth.
View Article and Find Full Text PDFActivating mutations in the canonical Wnt/β-catenin pathway are key drivers of hyperplasia, the gateway for tumor development. In a wide range of tissues, this occurs primarily through enhanced effects on cellular proliferation. Whether additional mechanisms contribute to β-catenin-driven hyperplasia remains unknown.
View Article and Find Full Text PDFRosettes are widely used in epithelial morphogenesis during embryonic development and organogenesis. However, their role in postnatal development and adult tissue maintenance remains largely unknown. Here, we show zona glomerulosa cells in the adult adrenal cortex organize into rosettes through adherens junction-mediated constriction, and that rosette formation underlies the maturation of adrenal glomerular structure postnatally.
View Article and Find Full Text PDFHomozygous nonsense mutations in WNT2B were identified in three individuals from two unrelated families with severe, neonatal-onset osmotic diarrhea after whole-exome sequencing was performed on trios from the two families. Intestinal biopsy samples from affected individuals were used for histology and immunofluorescence and to generate enteroids ex vivo. Histopathologic evaluation demonstrated chronic inflammatory changes in the stomach, duodenum, and colon.
View Article and Find Full Text PDFThe intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs) and slowly cycling, reserve ISCs (r-ISCs). Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis.
View Article and Find Full Text PDFThe intestine's ability to recover from catastrophic injury requires quiescent intestinal stem cells (q-ISCs). While rapidly cycling (Lgr5+) crypt base columnar (CBC) ISCs normally maintain the intestine, they are highly sensitive to pathological injuries (irradiation, inflammation) and must be restored by q-ISCs to sustain intestinal homeostasis. Despite clear relevance to human health, virtually nothing is known regarding the factors that regulate q-ISCs.
View Article and Find Full Text PDFThe gastrointestinal (GI) epithelium is a highly regenerative tissue with the potential to provide a renewable source of insulin(+) cells after undergoing cellular reprogramming. Here, we show that cells of the antral stomach have a previously unappreciated propensity for conversion into functional insulin-secreting cells. Native antral endocrine cells share a surprising degree of transcriptional similarity with pancreatic β cells, and expression of β cell reprogramming factors in vivo converts antral cells efficiently into insulin(+) cells with close molecular and functional similarity to β cells.
View Article and Find Full Text PDFWith the identification of Lgr5 as a definitive marker for intestinal stem cells, we used the highly novel, recently described, Lgr5-EGFP-IRES-cre ER (T2) knock in mouse model. Mice were injected with azoxymethane (AOM, a colon carcinogen) or saline (control) and fed a chemo-protective diet containing n-3 fatty acids and fermentable fiber (n-3 PUFA+pectin) or a control diet (n-6 PUFA + cellulose). Single cells were isolated from colonic mucosa crypts and three discrete populations of cells were collected via fluorescence activated cell sorting (FACS): Lgr5(high) (stem cells), Lgr5(low) (daughter cells) and Lgr5(negative) (differentiated cells).
View Article and Find Full Text PDFThe cellular and molecular mechanisms underlying adaptive changes to physiological stress within the intestinal epithelium remain poorly understood. Here, we show that PTEN, a negative regulator of the PI3K→AKT→mTORC1-signaling pathway, is an important regulator of dormant intestinal stem cells (d-ISCs). Acute nutrient deprivation leads to transient PTEN phosphorylation within d-ISCs and a corresponding increase in their number.
View Article and Find Full Text PDFLong-lived and self-renewing adult stem cells (SCs) are essential for homeostasis in a wide range of tissues and can include both rapidly cycling and quiescent (q)SC populations. Rapidly cycling SCs function principally during normal tissue maintenance and are highly sensitive to stress, whereas qSCs exit from their quiescent state in response to homeostatic imbalance and regenerative pressure. The regulatory mechanisms underlying the quiescent state include factors essential for cell cycle control, stress response and survival pathways, developmental signalling pathways, and post-transcriptional modulation.
View Article and Find Full Text PDFThere is mounting evidence that noncoding microRNAs (miRNA) are modulated by select chemoprotective dietary agents. For example, recently we demonstrated that the unique combination of dietary fish oil (containing n-3 fatty acids) plus pectin (fermented to butyrate in the colon) (FPA) up-regulates a subset of putative tumor suppressor miRNAs in intestinal mucosa, and down-regulates their predicted target genes following carcinogen exposure as compared to control (corn oil plus cellulose (CCA)) diet. To further elucidate the biological effects of diet and carcinogen modulated miR's in the colon, we verified that miR-26b and miR-203 directly target PDE4B and TCF4, respectively.
View Article and Find Full Text PDFK-Ras is a monomeric GTPase that controls cellular and tissue homeostasis. Prior studies demonstrated that mutationally activated K-Ras (K-Ras(G12D)) signals through MEK to promote expansion and hyperproliferation of the highly mitotically active transit-amplifying cells (TACs) in the intestinal crypt. Its effect on normally quiescent stem cells was unknown, however.
View Article and Find Full Text PDFA plethora of studies have described the disruption of key cellular regulatory mechanisms involving non-coding RNAs, specifically microRNAs (miRNA) from the let-7 family, the miR-17 family, miR-21, miR-143, and the miR-200 family, which contribute to aberrant signaling and tumor formation. Certain environmental factors, such as bioactive dietary agents, e.g.
View Article and Find Full Text PDFSince aberrant wound healing and chronic inflammation can promote malignant transformation, we determined whether dietary bioactive fish oil (FO)-derived n-3 polyunsaturated fatty acids (n-3 PUFA) modulate stem cell kinetics in a colitis-wounding model. Lgr5-LacZ and Lgr5-EGFP-IRES-creER(T2) mice were fed diets enriched with n-3 PUFA vs n-6 PUFA (control) and exposed to dextran sodium sulfate (DSS) for 5days in order to induce crypt damage and colitis throughout the colon. Stem cell number, cell proliferation, apoptosis, expression of stem cell (Lgr5, Sox9, Bmi1, Hopx, mTert, Ascl2, and DCAMKL-1) and inflammation (STAT3) markers were quantified.
View Article and Find Full Text PDFWe have recently demonstrated that nutritional bioactives (fish oil and pectin) modulate microRNA molecular switches in the colon. Since integrated analysis of microRNA and mRNA expression at an early stage of colon cancer development is lacking, in this study, four computational approaches were utilized to test the hypothesis that microRNAs and their posttranscriptionally regulated mRNA targets, i.e.
View Article and Find Full Text PDFWe have hypothesized that dietary modulation of intestinal non-coding RNA [microRNA (miRNA)] expression may contribute to the chemoprotective effects of nutritional bioactives (fish oil and pectin). To fully understand the effects of these agents on the expression of miRNAs, Sprague-Dawley rats were fed diets containing corn oil or fish oil with pectin or cellulose and injected with azoxymethane (AOM, a colon-specific carcinogen) or saline (control). Real-time polymerase chain reaction using miRNA-specific primers and Taq Man probes was carried out to quantify effects on miRNA expression in colonic mucosa.
View Article and Find Full Text PDF