Publications by authors named "Manasi S Apte"

Lipid droplets (LDs) are ubiquitous, neutral lipid storage organelles that act as hubs of metabolic processes. LDs are structurally unique with a hydrophobic core that mainly consists of neutral lipids, sterol esters, and triglycerides, enclosed within a phospholipid monolayer. Nascent LD formation begins with the accumulation of neutral lipids in the endoplasmic reticulum (ER) bilayer.

View Article and Find Full Text PDF

The discovery of HAATIrDNA, a telomerase-negative survival mode in which canonical telomeres are replaced with ribosomal DNA (rDNA) repeats that acquire chromosome end-protection capability, raised crucial questions as to how rDNA tracts 'jump' to eroding chromosome ends. Here, we show that HAATIrDNA formation is initiated and limited by a single translocation that juxtaposes rDNA from Chromosome (Chr) III onto subtelomeric elements (STE) on Chr I or II; this rare reaction requires RNAi and the Ino80 nucleosome remodeling complex (Ino80C), thus defining an unforeseen relationship between these two machineries. The unique STE-rDNA junction created by this initial translocation is efficiently copied to the remaining STE chromosome ends, independently of RNAi or Ino80C.

View Article and Find Full Text PDF

The identification of telomerase-negative HAATI (heterochromatin amplification-mediated and telomerase-independent) cells, in which telomeres are superseded by nontelomeric heterochromatin tracts, challenged the idea that canonical telomeres are essential for chromosome linearity and raised crucial questions as to how such tracts translocate to eroding chromosome ends and confer end protection. Here we show that HAATI arises when telomere loss triggers a newly recognized illegitimate translocation pathway that requires RNAi factors. While RNAi is necessary for the translocation events that mobilize ribosomal DNA (rDNA) tracts to all chromosome ends (forming "HAATI" chromosomes), it is dispensable for HAATI maintenance.

View Article and Find Full Text PDF

While most cancer cells rely on telomerase expression/re-activation for linear chromosome maintenance and sustained proliferation, a significant population of cancers (10-15%) employs telomerase-independent strategies, collectively dubbed Alternative Lengthening of Telomeres (ALT). Most ALT cells relax the usual role of telomeres as inhibitors of local homologous recombination while maintaining the ability of telomeres to prohibit local non-homologous end joining reactions. Here we review current concepts surrounding how ALT telomeres achieve this new balance via alterations in chromatin landscape, DNA damage repair processes and handling of telomeric transcription.

View Article and Find Full Text PDF

The eukaryotic genome is assembled into distinct types of chromatin. Gene-rich euchromatin has active chromatin marks, while heterochromatin is gene-poor and enriched for silencing marks. In spite of this, genes native to heterochromatic regions are dependent on their normal environment for full expression.

View Article and Find Full Text PDF

Methods for altering the sequence of endogenous Drosophila melanogaster genes remain labor-intensive. We have tested a relatively simple strategy that enables the introduction of engineered mutations in the vicinity of existing P-elements. This method was used to generate useful alleles of the roX1 gene, which produces a noncoding RNA involved in dosage compensation.

View Article and Find Full Text PDF

Chromosome pairing is usually discussed in the context of meiosis. Association of homologues in germ cells enables chromosome segregation and is necessary for fertility. A few organisms, such as flies, also pair their entire genomes in somatic cells.

View Article and Find Full Text PDF