Advancing next-generation battery technologies requires a thorough understanding of the intricate phenomena occurring at anodic interfaces. This focused review explores key interfacial processes, examining their thermodynamics and consequences in ion transport and charge transfer kinetics. It begins with a discussion on the formation of the electro chemical double layer, based on the GuoyChapman model, and explores how charge carriers achieve equilibrium at the interface.
View Article and Find Full Text PDFApplication of an aqueous Zn-ion battery is plagued by a water-induced hydrogen evolution reaction (HER), resulting in local pH variations and an unstable electrode-electrolyte interface (EEI) with uncontrolled Zn plating and side reactions. Here, 4-methyl pyridine N-oxide (PNO) is introduced as a redox non-innocent additive that comprises a hydrophilic bipolar N-O ion pair as a coordinating ligand for Zn and a hydrophobic ─CH group at the para position of the pyridine ring that reduces water activity at the EEI, thereby enhancing stability. The N-O moiety of PNO possesses the unique functionality of an efficient push electron donor and pull electron acceptor, thus maintaining the desired pH during charging/discharging.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
Reductive amination of carbonyls to primary amines is of importance to the synthesis of fine chemicals; however, this reaction with heterogeneous catalysts containing earth-abundant metals under mild conditions remains scarce. Here, we show that the nickel catalyst with mixed oxidation states enables such synthesis of primary amines under low temperature (50 °C) and H pressure (0.9 MPa).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2014
Described herein is the photocatalytic hydrogen evolution using crystalline carbon nitrides (CNs) obtained by supramolecular aggregation followed by ionic melt polycondensation (IMP) using melamine and 2,4,6-triaminopyrimidine as a dopant. The solid state NMR spectrum of (15)N-enriched CN confirms the triazine as a building unit. Controlling the amount and arrangements of dopants in the CN structure can dramatically enhance the photocatalytic performance for H2 evolution.
View Article and Find Full Text PDFHighly crystalline pure phase multi-ferroic bismuth ferrite nanoparticles have been integrated into the ordered mesoporous silica material through one pot synthesis protocol. Here, amphiphilic tri-block copolymer Pluronic P123 is being used as structure-directing agent. High temperature heating during calcination and acid treatment eliminates the presence of probable impurity phases.
View Article and Find Full Text PDFMetal-organic framework (MOF) porosity relies upon robust metal-organic bonds to retain structural rigidity upon solvent removal. Both the as-synthesized and activated Cu and Zn polymorphs of HKUST-1 were studied by room temperature acid solution calorimetry. Their enthalpies of formation from dense assemblages (metal oxide (ZnO or CuO), trimesic acid (TMA), and N,N-dimethylformamide (DMF)) were calculated from the calorimetric data.
View Article and Find Full Text PDFMesoporous phosphosilicate nanoparticles of hollow sphere architecture have been prepared hydrothermally for the first time under acidic pH conditions and this material is found to be efficient in encapsulating an antibiotic drug and its controlled release at physiological pH for possible cargo delivery applications.
View Article and Find Full Text PDFIn an effort to expand the realm of possibilities of nitrogen-rich porous materials that could be used in catalysis, herein we report the synthesis of a new highly nitrogen rich (ca. 45%) porous covalent imine network (CIN-1) material employing simple Schiff base chemistry and further grafting its surface with palladium. Pd-loaded CIN-1 support acts as a truly heterogeneous catalyst towards Suzuki C-C coupling reaction between aryl halides with arylboronic acids.
View Article and Find Full Text PDFA new porous Co(II)-salicylate metal-organic framework material has been synthesized hydrothermally through the reaction of Co(II) chloride with sodium salicylate under mild alkaline pH conditions. To get an idea about the structural aspect of the material from the powder X-ray diffraction (PXRD) pattern, MAUD program has been successfully utilized and the assigned peaks match very well with a new tetragonal phase (space group, P4mm) having the unit cell parameters: a = b = 12.957 (0.
View Article and Find Full Text PDFHerein, we explore the idea of self-assembly of nearly monodisperse nanoparticles as uniform building blocks to design highly crystalline mesoporous TiO(2) nanoparticles, through evaporation-induced self-assembly (EISA) and hydrothermal methods by using non-ionic Pluronic F127 and anionic surfactant SDS, respectively as structure directing agents. The small- and wide-angle powder X-ray diffraction and transmission electron microscopy (TEM) are used to characterize the mesophases. N(2) adsorption-desorption studies and high-resolution TEM results further reveal that mesopores are formed by the arrangement of the nanoparticles of size ca.
View Article and Find Full Text PDF