Publications by authors named "Manas Gaur"

The lack of explainability in using relevant clinical knowledge hinders the adoption of artificial intelligence-powered analysis of unstructured clinical dialogue. A wealth of relevant, untapped Mental Health (MH) data is available in online communities, providing the opportunity to address the explainability problem with substantial potential impact as a screening tool for both online and offline applications. Inspired by how clinicians rely on their expertise when interacting with patients, we leverage relevant clinical knowledge to classify and explain depression-related data, reducing manual review time and engendering trust.

View Article and Find Full Text PDF

Virtual Mental Health Assistants (VMHAs) continuously evolve to support the overloaded global healthcare system, which receives approximately 60 million primary care visits and 6 million emergency room visits annually. These systems, developed by clinical psychologists, psychiatrists, and AI researchers, are designed to aid in Cognitive Behavioral Therapy (CBT). The main focus of VMHAs is to provide relevant information to mental health professionals (MHPs) and engage in meaningful conversations to support individuals with mental health conditions.

View Article and Find Full Text PDF

Virtual Mental Health Assistants (VMHAs) are utilized in health care to provide patient services such as counseling and suggestive care. They are not used for patient diagnostic assistance because they cannot adhere to safety constraints and specialized clinical process knowledge (ProKnow) used to obtain clinical diagnoses. In this work, we define ProKnow as an ordered set of information that maps to evidence-based guidelines or categories of conceptual understanding to experts in a domain.

View Article and Find Full Text PDF

Background: Web-based resources and social media platforms play an increasingly important role in health-related knowledge and experience sharing. There is a growing interest in the use of these novel data sources for epidemiological surveillance of substance use behaviors and trends.

Objective: The key aims were to describe the development and application of the drug abuse ontology (DAO) as a framework for analyzing web-based and social media data to inform public health and substance use research in the following areas: determining user knowledge, attitudes, and behaviors related to nonmedical use of buprenorphine and illicitly manufactured opioids through the analysis of web forum data Prescription Drug Abuse Online Surveillance; analyzing patterns and trends of cannabis product use in the context of evolving cannabis legalization policies in the United States through analysis of Twitter and web forum data (eDrugTrends); assessing trends in the availability of novel synthetic opioids through the analysis of cryptomarket data (eDarkTrends); and analyzing COVID-19 pandemic trends in social media data related to 13 states in the United States as per Mental Health America reports.

View Article and Find Full Text PDF

Epidemics like Covid-19 and Ebola have impacted people's lives significantly. The impact of mobility of people across the countries or states in the spread of epidemics has been significant. The spread of disease due to factors local to the population under consideration is termed the endogenous spread.

View Article and Find Full Text PDF

As Named Entity Recognition (NER) has been essential in identifying critical elements of unstructured content, generic NER tools remain limited in recognizing entities specific to a domain, such as drug use and public health. For such high-impact areas, accurately capturing relevant entities at a more granular level is critical, as this information influences real-world processes. On the other hand, training NER models for a specific domain without handcrafted features requires an extensive amount of labeled data, which is expensive in human effort and time.

View Article and Find Full Text PDF

Background: In clinical diagnostic interviews, mental health professionals (MHPs) implement a care practice that involves asking open questions (eg, "What do you want from your life?" "What have you tried before to bring change in your life?") while listening empathetically to patients. During these interviews, MHPs attempted to build a trusting human-centered relationship while collecting data necessary for professional medical and psychiatric care. Often, because of the social stigma of mental health disorders, patient discomfort in discussing their presenting problem may add additional complexities and nuances to the language they use, that is, hidden signals among noisy content.

View Article and Find Full Text PDF

Objectives: The recent discoveries of phylogenetically confirmed COVID-19 reinfection cases worldwide, together with studies suggesting that antibody titres decrease over time, raise the question of what course the epidemic trajectories may take if immunity were really to be temporary in a significant fraction of the population. The objective of this study is to obtain an answer for this important question.

Methods: We construct a ground-up delay differential equation model tailored to incorporate different types of immune response.

View Article and Find Full Text PDF

Our current health applications do not adequately take into account contextual and personalized knowledge about patients. In order to design "Personalized Coach for Healthcare" applications to manage chronic diseases, there is a need to create a Personalized Healthcare Knowledge Graph (PHKG) that takes into consideration a patient's health condition (personalized knowledge) and enriches that with contextualized knowledge from environmental sensors and Web of Data (e.g.

View Article and Find Full Text PDF

Life science ontologies play an important role in Semantic Web. Given the diversity in fish species and the associated wealth of information, it is imperative to develop an ontology capable of linking and integrating this information in an automated fashion. As such, we introduce the Fish Ontology (FO), an automated classification architecture of existing fish taxa which provides taxonomic information on unknown fish based on metadata restrictions.

View Article and Find Full Text PDF