We develop a mathematical model to find the optimal inspection strategy for detecting a nuclear weapon (or nuclear material to make a weapon) from being smuggled into the United States in a shipping container, subject to constraints of port congestion and an overall budget. We consider an 11-layer security system consisting of shipper certification, container seals, and a targeting software system, followed by passive (neutron and gamma), active (gamma radiography), and manual testing at overseas and domestic ports. Currently implemented policies achieve a low detection probability, and improved security requires passive and active testing of trusted containers and manually opening containers that cannot be penetrated by radiography.
View Article and Find Full Text PDFMotivated by the difficulty of biometric systems to correctly match fingerprints with poor image quality, we formulate and solve a game-theoretic formulation of the identification problem in two settings: U.S. visa applicants are checked against a list of visa holders to detect visa fraud, and visitors entering the U.
View Article and Find Full Text PDF