Background: Although IGF2BP3 has been implicated in tumorigenesis and poor outcomes in multiple cancers, its role in soft-tissue sarcoma (STS) remains unknown. Preliminary data have suggested an association with IGF2BP3 expression among patients with well-differentiated/dedifferentiated liposarcoma (WD/DD LPS), a disease where molecular risk stratification is lacking.
Methods: We examined the survival associations of IGF2BP3 via univariate and multivariate Cox regression in three unique datasets: (1) the Cancer Genome Atlas (TCGA), (2) an in-house gene microarray, and (3) an in-house tissue microarray (TMA).
Background: Cardiac sarcomas are rare and aggressive tumors with little known about the demographics, genetics, or treatment outcomes.
Objectives: The objectives of this study were to characterize the demographics, treatment modality, and survival associated with cardiac sarcomas and evaluate the potential for mutation-directed therapies.
Methods: All cases from 2000 to 2018 of cardiac sarcoma were extracted from the SEER database.
Objective: To evaluate the clinicopathologic characteristics of head and neck solitary fibrous tumors and features that may predict tumor recurrence.
Study Design: Retrospective review.
Setting: University of California-Los Angeles Medical Center.
Vinculin, a mechanotransducer associated with both adherens junctions (AJs) and focal adhesions (FAs), plays a central role in force transmission through cell-cell and cell-substratum contacts. We generated the conditional knockout (cKO) of vinculin in murine skin that results in the loss of bulge stem cell (BuSC) quiescence and promotes continual cycling of the hair follicles. Surprisingly, we find that the AJs in vinculin cKO cells are mechanically weak and impaired in force generation despite increased junctional expression of E-cadherin and α-catenin.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
November 2020
Background & Aims: Biotin is a water-soluble vitamin that is indispensable for human health. Biotin deficiency can cause failure-to-thrive, immunodeficiency, alopecia, dermatitis, and conjunctivitis. We previously reported that biotin deficiency also can lead to severe colitis in mice, which is completely reversed with supplementation.
View Article and Find Full Text PDFUnlabelled: Emerging studies show the potential application of synthetic biomaterials that are intrinsically osteoconductive and osteoinductive as bone grafts to treat critical bone defects. Here, the biomaterial not only assists recruitment of endogenous cells, but also supports cellular activities relevant to bone tissue formation and function. While such biomaterial-mediated in situ tissue engineering is highly attractive, success of such an approach relies largely on the regenerative potential of the recruited cells, which is anticipated to vary with age.
View Article and Find Full Text PDFParagangliomas are rare neoplasms that arise from the chromaffin cells of the autonomic nervous system. Although paragangliomas can occur anywhere paraganglia are present, they tend to occur in the head, neck, and retroperitoneum. Rarely, paragangliomas can occur in the peripancreatic area and present as a pancreatic mass, creating a diagnostic challenge for the clinician, radiologist, and pathologist.
View Article and Find Full Text PDFSynthetic biomaterials that create a dynamic calcium (Ca)-, phosphate (PO) ion-, and calcium phosphate (CaP)-rich microenvironment, similar to that found in native bone tissue, have been shown to promote osteogenic commitment of stem cells in vitro and in vivo. The intrinsic osteoconductivity and osteoinductivity of such biomaterials make them promising bone grafts for the treatment of bone defects. We thus aimed to evaluate the potential of mineralized biomaterials to induce bone repair of a critical-sized cranial defect in the absence of exogenous cells and growth factors.
View Article and Find Full Text PDFBackground: Molecular classification of bladder cancer has been increasingly proposed as a potential tool to predict clinical outcomes and responses to chemotherapy. Here we focused on mechanistic target of rapamycin (mTOR) inhibition as a chemotherapeutic strategy and characterized the expression profile of mTOR signaling targets in representative bladder cancer cell lines from basal, luminal, and either basal/luminal ("non-type") molecular subtypes.
Materials And Methods: Protein and mRNA expression of mTOR signaling components from representative luminal (RT4 and RT112), basal (SCaBER and 5637), and nontype (T24 and J82) bladder cancer cell line subtypes were determined by Western blot and database mining analysis of the Cancer Cell Line Encyclopedia.
The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body.
View Article and Find Full Text PDFBackground: Patients with atopic dermatitis (AD) are susceptible to several viruses, including herpes simplex virus (HSV). Some patients experience 1 or more episodes of a severe skin infection caused by HSV termed eczema herpeticum (EH). There are numerous mouse models of AD, but no established model exists for EH.
View Article and Find Full Text PDFFibrosis is a pervasive disease in which the excessive deposition of extracellular matrix (ECM) compromises tissue function. Although the underlying mechanisms are mostly unknown, matrix stiffness is increasingly appreciated as a contributor to fibrosis rather than merely a manifestation of the disease. Here we show that the loss of Fibulin-5, an elastic fibre component, not only decreases tissue stiffness, but also diminishes the inflammatory response and abrogates the fibrotic phenotype in a mouse model of cutaneous fibrosis.
View Article and Find Full Text PDFJ Invest Dermatol
August 2015
The inflammasome is a complex of proteins that has a critical role in mounting an inflammatory response in reply to a harmful stimulus that compromises the homeostatic state of the tissue. The NLRP3 inflammasome, which is found in a wound-like environment, is comprised of three components: the NLRP3, the adaptor protein ASC and caspase-1. Interestingly, although ASC levels do not fluctuate, caspase-1 levels are elevated in both physiological and pathological conditions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2013
Vascular flow through tissues is regulated via a number of homeostatic mechanisms. Localized control of tissue blood flow, or autoregulation, is a key factor in regulating tissue perfusion and oxygenation. We show here that the net balance between two hypoxia-inducible factor (HIF) transcription factor isoforms, HIF-1α and HIF-2α, is an essential mechanism regulating both local and systemic blood flow in the skin of mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2010
Atopic dermatitis is an inflammatory skin disease that affects approximately 20% of children worldwide. Left untreated, the barrier function of the skin is compromised, increasing susceptibility to dehydration and infection. Despite its prevalence, its multifactorial nature has complicated the unraveling of its etiology.
View Article and Find Full Text PDFOsteoblast recruitment to the site of future bone formation is essential for skeletal development, bone remodeling and fracture healing. A number of factors associated with bone tissue have been reported to induce directional migration of osteoblasts but the mechanism remains to be clarified. In this study, to explore a major chemotactic factor(s) for osteoblasts, we examined the serum-free medium conditioned by MC3T3-E1 osteoblast-like cells for its ability to induce osteoblast migration.
View Article and Find Full Text PDFCell migration is essential for both organogenesis and tumor progression. Bone morphogenetic proteins (BMPs) are reported to be critical for not only bone formation but also tumor invasion. Here, we found that treatment with recombinant human BMP-2 (rhBMP-2) enhanced the haptotactic response of murine osteoblastic MC3T3-E1 and osteosarcoma Dunn cells to various extracellular matrix (ECM) components, including fibronectin, type I collagen, and laminin-1.
View Article and Find Full Text PDF