Our previous study showed that approximately one-third of the nitrogen of 15N-labeled NO2 taken up into plants was converted to a previously unknown organic nitrogen (hereafter designated UN) that was not recoverable by the Kjeldahl method (Morikawa et al., 2004). In this communication, we discuss metabolic and physiological relevance of the UN based on our newest experimental results.
View Article and Find Full Text PDFAll plants examined to date possess non-symbiotic hemoglobin whose physiological role remains unclear. The present study explored the catalytic function of three representative classes of the plant hemoglobin from Arabidopsis thaliana: AtGLB1, AtGLB2, and AtGLB3. Purified recombinant proteins of these hemoglobins displayed hydrogen peroxide-dependent oxidation of several peroxidase substrates that was sensitive to cyanide, revealing intrinsic peroxidase-like activity.
View Article and Find Full Text PDFThe importance of nitric oxide (NO) as a signaling molecule to various plant physiological and pathophysiological processes is becoming increasingly evident. However, little is known about how plants protect themselves from nitrosative and oxidative damage mediated by NO and NO-derived reactive nitrogen species (RNS). Peroxynitrite, the product of the reaction between NO and superoxide anion, is considered to play a central role in RNS-induced cytotoxicity, as a result of its potent ability to oxidize diverse biomolecules.
View Article and Find Full Text PDF