Polyurethane (PU) has a diverse array of customized physical, chemical, mechanical, and structural characteristics, rendering it a superb option for biomedical applications. The current study involves modifying the polyurethane surface by the process of aminolysis (aminolyzed polyurethane; PU-A), followed by covalently immobilizing Carboxymethyl cellulose (CMC) polymer utilizing Schiff base chemistry. Oxidation of CMC periodically leads to the creation of dialdehyde groups along the CMC chain.
View Article and Find Full Text PDFThe designing of functional and reactive nanosilver has been carried out by in-situ reduction of silver nitrate using oxidized carboxymethyl cellulose (OCMC). The reduction process is also accompanied by the stabilization of nanoparticles using the OCMC polymer chain, leading to the formation of a structure where nanosilver is entrapped within OCMC gel. The silver nanogels characterized using transmission electron microscopy (TEM) are found to be ∼22 nm.
View Article and Find Full Text PDFThe antimicrobial finishing is the most suitable alternative for designing medical textiles for biomedical applications. The present investigation aims at the preparation of skin-contacting khadi cotton fabric that would prevent microbial infection and offer excellent skin compatibility. A simple approach has been followed for the preparation of bioactive nanogels for antimicrobial finishing of the khadi cotton fabric.
View Article and Find Full Text PDFPolymethylmethacrylate (PMMA) is a widely used denture base material with a major drawback of inferior mechanical properties. In the existing published reports, most studies indicate the superiority of the incorporation of various reinforcement materials in PMMA in terms of the flexural strength (FS) and impact strength (IS), whereas none shows the compilation and comparison of all. The present meta-analysis aims at synthesizing all the available data.
View Article and Find Full Text PDF