Publications by authors named "Manali M Kamath"

Objective: The fungal unfolded protein response consists of a two-component relay in which the ER-bound sensor, IreA, splices and activates the mRNA of the transcription factor, HacA. Previously, we demonstrated that is essential for virulence in a murine model of fungal keratitis (FK), suggesting the pathway could serve as a therapeutic target. Here we investigate the antifungal properties of known inhibitors of the mammalian Ire1 protein both and in a treatment model of FK.

View Article and Find Full Text PDF

Objective: The fungal unfolded protein response consists of a two-component relay in which the ER-bound sensor, IreA, splices and activates the mRNA of the transcription factor, HacA. Previously, we demonstrated that is essential for virulence in a murine model of fungal keratitis (FK), suggesting the pathway could serve as a therapeutic target. Here we investigate the antifungal properties of known inhibitors of the mammalian Ire1 protein both and in a treatment model of FK.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the development of hypoxia in the cornea due to fungal keratitis and its impact on the virulence of fungi like Aspergillus fumigatus and Fusarium solani.
  • Researchers used C57BL/6J mice to evaluate tissue hypoxia through injections of pimonidazole, alongside genetic manipulation of A. fumigatus to understand the role of the srbA gene in virulence.
  • Findings indicate that corneal hypoxia occurs rapidly after fungal infection, and pathways like SrbA are crucial for fungi to establish infections, suggesting potential new targets for antifungal treatments.
View Article and Find Full Text PDF

The Aspergillus fumigatus unfolded protein response (UPR) is a two-component relay consisting of the ER-bound IreA protein, which splices and activates the mRNA of the transcription factor HacA. Spliced hacA accumulates under conditions of acute ER stress in vitro, and UPR null mutants are hypovirulent in a murine model of invasive pulmonary infection. In this report, we demonstrate that a hacA deletion mutant (ΔhacA) is furthermore avirulent in a model of fungal keratitis, a corneal infection, and an important cause of ocular morbidity and unilateral blindness worldwide.

View Article and Find Full Text PDF

Fungal keratitis (FK) pathology is driven by both fungal growth and inflammation within the corneal stroma. Standard in vitro infection models ̶ involving co-culture of the pathogen and the corneal cells in tissue culture medium ̶ are sufficient to probe host responses to the fungus; however, they lack the physiological structure and nutrient composition of the stroma to accurately study fungal invasiveness and metabolic processes. We therefore sought to develop a culture model of FK that would allow for both host and fungal cell biology to be evaluated in parallel.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqcseersdr573v99ji52gslajeqpjelj9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once