Publications by authors named "Manal Hessien"

In this study, we explored the formation of CuO nanoparticles, NiO nanoflakes, and CuO-NiO nanocomposites using saponin extract and a microwave-assisted hydrothermal method. Five green synthetic samples were prepared using aqueous saponin extract and a microwave-assisted hydrothermal procedure at 200 °C for 30 min. The samples were pristine copper oxide (100C), 75% copper oxide-25% nickel oxide (75C25N), 50% copper oxide-50% nickel oxide (50C50N), 25% copper oxide-75% nickel oxide (25C75N), and pristine nickel oxide (100N).

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on creating CuO-NiO nanocomposites using a combination of green synthesis and microwave-assisted hydrothermal methods, exploring various synthesis conditions like precursor concentration, pH, and temperature.
  • The synthesized nanocomposites were analyzed for their structure and properties, revealing nickel oxide with a face-centered cubic phase and copper oxide in a monoclinic phase, with crystallite sizes between 29-39 nm.
  • Spectroscopic techniques confirmed that the direct band gaps of the nanocomposites varied from 2.39 to 3.17 eV, indicating their potential applications in various fields.
View Article and Find Full Text PDF

The toxicity of dyes has a long-lasting negative impact on aquatic life. Adsorption is an inexpensive, simple, and straightforward technique for eliminating pollutants. One of the challenges facing adsorption is that it is hard to collect the adsorbents after the adsorption.

View Article and Find Full Text PDF

This work represents a novel combination between pods' extract and the hydrothermal method to prepare nanoparticles of pure zinc oxide and pure copper oxide and nanocomposites of both oxides in different ratios. Five samples were prepared with different ratios of zinc oxide and copper oxide; 100% ZnO (ZC0), 75% ZnO: 25% CuO (ZC25), 50% ZnO: 50% CuO (ZC50), 25% ZnO: 75% CuO (ZC75), and 100% CuO (ZC100). Several techniques have been applied to characterize the prepared powders as FTIR, XRD, SEM, and TEM.

View Article and Find Full Text PDF

Surface composite design was used to study the effect of the ZnO synthesis conditions on its adsorption of methyl orange (MO) and methylene blue (MB). The ZnO was prepared via hydrothermal treatment under different conditions including temperature (T), precursor concentration (C), pH, and reaction time (t). Models were built using four Design expert-11 software-based responses: the point of zero charge (pHzc), MO and MB removal efficiencies (R, R), MO and MB adsorption capacities (q, q), and hydrodynamic diameter of ZnO particles (D).

View Article and Find Full Text PDF

PIC (Phase Inversion Composition) O-W nanoemulsions was used as a template for the synthesis of Hierarchical Porous Silica (HPS), and the oil phase of the nanoemulsion was used as a nanoreactor for the preparation of magnetic gamma-Fe(2)O(3) nanoparticles, confined within the silica matrix.

View Article and Find Full Text PDF

We report on an analysis of the parameters that control both the stability and tunability of O/W nanoemulsions prepared by the phase inversion composition (PIC). These nanoemulsions are prepared with Tween 80 and Span 80, two nonionic surfactants, that can be mixed to adjust the hydrophilic lipophilic balance (HLB). We used a process mixture design method, which combines mixture and process design with phase diagrams, to describe the cross-link between parameters like composition, temperature of preparation, and HLB.

View Article and Find Full Text PDF