Nanotechnology represents a burgeoning field of science that enables advanced research across various domains. In recent years, there has been a notable increase in the utilization of silver nanoparticles (AgNPs) for diverse agricultural and industrial applications. Similarly, copper nanoparticles (CuNPs) have significant attention in agriculture due to their cost-effectiveness and practicality.
View Article and Find Full Text PDFThis study evaluated Aloe vera extract as a green inhibitor to prevent corrosion in seawater environments. A. vera extract was produced by maceration with methanol-water at room temperature.
View Article and Find Full Text PDFA cost-effective, viral nucleic acid (NA) isolation kit based on NAxtra magnetic nanoparticles was developed at the Norwegian University of Science and Technology in response to the shortage of commercial kits for isolation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA during the coronavirus disease 2019 (COVID-19) pandemic. This method showed comparable sensitivity to available kits at significantly reduced cost, making its application for other biological sources an intriguing prospect. Thus, based on this low-cost nucleic acid extraction technology, we developed a simple, low- and high-throughput, efficient method for isolation of high-integrity total NA, DNA and RNA from mammalian cell lines (monolayer) and organoids (3D-cultures).
View Article and Find Full Text PDFTrop Biomed
September 2023
Most of the public health importance coronaviruses, such as Severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-2 are likely originated from bats and spread to humans through intermediate hosts; civet cats, dromedary camel and Malayan pangolin, respectively. SARS-CoV-2-like coronaviruses were detected in Thailand, which is neighbouring with Kelantan in East Coast Malaysia. To date, there is no report on the presence of public health concerns (SARS-CoV, SARS-CoV-2 and MERS-CoV) coronaviruses in bats from Malaysia.
View Article and Find Full Text PDFInkjet-printable ink formulated with graphene oxide (GO) offers several advantages, including aqueous dispersion, low cost, and environmentally friendly production. However, water-based GO ink encounters challenges such as high surface tension, low wetting properties, and reduced ink stability over prolonged storage time. Alkali lignin, a natural surfactant, is promising in improving GO ink's stability, wettability, and printing characteristics.
View Article and Find Full Text PDFis a bacterium that causes metal deterioration by forming biofilms on metal surfaces. This work was carried out to analyze the antibacterial activity and the phenolic and flavonoid contents of the leaf extract against . leaves were extracted in a methanol solution at different concentrations.
View Article and Find Full Text PDFSolid-phase reversible immobilization (SPRI) bead technology is widely used in molecular biology for convenient DNA manipulation. However, commercial SPRI bead kits lack cost advantages and flexibility. It is, therefore, necessary to develop new and alternative cost-effective methods of on-par or better quality.
View Article and Find Full Text PDFWearable technology, such as electronic components integrated into clothing or worn as accessories, is becoming increasingly prevalent in fields like healthcare and biomedical monitoring. These devices allow for continuous monitoring of important biomarkers for medical diagnosis, monitoring of physiological health, and evaluation. However, an open-source wearable potentiostat is a relatively new technology that still faces several design limitations such as short battery lifetime, bulky size, heavy weight, and the requirement for a wire for data transmission, which affects comfortability during long periods of measurement.
View Article and Find Full Text PDFBackground: Brain cooling therapy is one of the subjects of interest, and currently, data on direct brain cooling are lacking. Hence, the objective is to investigate the clinical outcomes and discuss the thermodynamics aspect of direct brain cooling on severely injured brain patients.
Methods: This pilot study recruited the severely injured brain patients who were then randomized to either a direct brain cooling therapy group using a constant cooling temperature system or a control group.
High electron mobility transistor (HEMT) biosensors hold great potential for realizing label-free, real-time, and direct detection. Owing to their unique properties of two-dimensional electron gas (2DEG), HEMT biosensors have the ability to amplify current changes pertinent to potential changes with the introduction of any biomolecules, making them highly surface charge sensitive. This review discusses the recent advances in the use of AlGaN/GaN and AlGaAs/GaAs HEMT as biosensors in the context of different gate architectures.
View Article and Find Full Text PDFThe emergence of coronavirus disease 2019 (COVID-19) motivates continuous efforts to develop robust and accurate diagnostic tests to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Detection of viral nucleic acids provides the highest sensitivity and selectivity for diagnosing early and asymptomatic infection because the human immune system may not be active at this stage. Therefore, this work aims to develop a label-free electrochemical DNA biosensor for SARS-CoV-2 detection using a printed circuit board-based gold substrate (PCBGE).
View Article and Find Full Text PDFThe emergence of gallium nitride high-electron-mobility transistor (GaN HEMT) devices has the potential to deliver high power and high frequency with performances surpassing mainstream silicon and other advanced semiconductor field-effect transistor (FET) technologies. Nevertheless, HEMT devices suffer from certain parasitic and reliability concerns that limit their performance. This paper aims to review the latest experimental evidence regarding HEMT technologies on the parasitic issues that affect aluminum gallium nitride (AlGaN)/GaN HEMTs.
View Article and Find Full Text PDFRecently, there has been increasing interest in electrochemical printed sensors for a wide range of applications such as biomedical, pharmaceutical, food safety, and environmental fields. A major challenge is to obtain selective, sensitive, and reliable sensing platforms that can meet the stringent performance requirements of these application areas. Two-dimensional (2D) nanomaterials advances have accelerated the performance of electrochemical sensors towards more practical approaches.
View Article and Find Full Text PDFSweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis.
View Article and Find Full Text PDFIn this study, fabrication of PrDyFeB (at.%) alloys with x = 0, 1, 2, and 3 compositions was performed with a mini vacuum arc melting furnace. The alloys were successively annealed in an inert atmosphere for microstructure homogenization.
View Article and Find Full Text PDFFace recognition is one of the most sophisticated disciplines of biometric systems. The use of VCSEL in automotive applications is one of the most recent advances. The existing VCSEL package with a diffuser on top of a lens intended for automotive applications could not satisfy the criteria of the automotive TS16949: 2009 specification because the package was harmed and developed a lens fracture during 100 thermal cycle tests.
View Article and Find Full Text PDFThe development of precise and efficient diagnostic tools enables early treatment and proper isolation of infected individuals, hence limiting the spread of coronavirus disease 2019 (COVID-19). The standard diagnostic tests used by healthcare workers to diagnose severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have some limitations, including longer detection time, the need for qualified individuals, and the use of sophisticated bench-top equipment, which limit their use for rapid SARS-CoV-2 assessment. Advances in sensor technology have renewed the interest in electrochemical biosensors miniaturization, which provide improved diagnostic qualities such as rapid response, simplicity of operation, portability, and readiness for on-site screening of infection.
View Article and Find Full Text PDFHealthcare (Basel)
January 2022
Falling is one of the most serious health risk problems throughout the world for elderly people. Considerable expenses are allocated for the treatment of after-fall injuries and emergency services after a fall. Fall risks and their effects would be substantially reduced if a fall is predicted or detected accurately on time and prevented by providing timely help.
View Article and Find Full Text PDFSunflower production is significantly lower in arid and semi-arid regions due to various crop management problem. Conservation of tillage provides the most excellent opportunity to reduce degradation of soil reserves and increase soil productivity. The main objective of this study was to investigate the combined effects of conservation tillage and drought stress on growth and productivity of different sunflower hybrids.
View Article and Find Full Text PDFDrought is a major and constantly increasing abiotic stress factor, thus limiting chickpea production. Like other crops, Kabuli Chickpea genotypes are screened for drought stress through Multi-environment trials (METs). Although, METs analysis is generally executed taking into account only one trait, which provides less significant reliability for the recommendation of genotypes as compared to multi trait-based analysis.
View Article and Find Full Text PDFTyphoid fever, also known as typhoid, is a life-threatening bacterial infection that remains a global health concern. The infection is associated with a significant morbidity and mortality rate, resulting in an urgent need for specific and rapid detection tests to aid prevention and management of the disease. The present review aims to assess the specificity and sensitivity of the available literature on the immunodiagnostics of typhoid fever.
View Article and Find Full Text PDFIn acoustic receiver design, the receiving sensitivity and bandwidth are two primary parameters that determine the performance of a device. The trade-off between sensitivity and bandwidth makes the design very challenging, meaning it needs to be fine-tuned to suit specific applications. The ability to design a PMUT with high receiving sensitivity and a wide bandwidth is crucial to allow a wide spectrum of transmitted frequencies to be efficiently received.
View Article and Find Full Text PDFThe concept of wholeness or oneness refers to not only humans, but also all of creation. Similarly, consciousness may not wholly exist inside the human brain. One consciousness could permeate the whole universe as limitless energy; thus, human consciousness can be regarded as limited or partial in character.
View Article and Find Full Text PDFMaize/soybean relay intercropping system is a popular cultivation system to obtain high yields of both crops with reduced inputs. However, shading by maize decreases the photosynthetically active radiation, reaching the soybean canopy in maize/soybean relay intercropping system, which reduces soybean radiation use efficiency and competitiveness. Here, we reveal that compact maize in maize/soybean relay intercropping system enhances the photosynthetically active radiation transmittance, leaf area index, dry matter production, radiation use efficiency, and competitiveness of soybean and compensates the slight maize yield loss by substantially increasing soybean yield.
View Article and Find Full Text PDF