Efferocytosis refers to the process that phagocytes recognize and remove the apoptotic cells, which is essential for maintaining tissue homeostasis both in physiological and pathological conditions. Numerous studies have demonstrated that efferocytosis can prevent secondary necrosis and proinflammatory factor release, leading to the resolution of inflammation and tissue immunological tolerance in numerous diseases such as stroke. Stroke is a leading cause of death and morbidity for adults worldwide.
View Article and Find Full Text PDFThe risk factors and causes of intracerebral hemorrhage (ICH) and the degree of functional recovery after ICH are distinct between young and elderly patients. The increasing incidence of ICH in young adults has become a concern; however, research on the molecules and pathways involved ICH in subjects of different ages is lacking. In this study, tandem mass tag (TMT)-based proteomics was utilized to examine the protein expression profiles of perihematomal tissue from young and aged mice 24 h after collagenase-induced ICH.
View Article and Find Full Text PDFEthnopharmacological Relevance: Tenuigenin (TNG) is an extract obtained from Polygalae Radix. It possesses anti-inflammatory, antioxidant, and neuroprotective properties. However, the potential mechanism of TNG in intracerebral hemorrhage (ICH) has not been well studied.
View Article and Find Full Text PDFDespite decades of intensive research, there are still very limited options for the effective treatment of intracerebral hemorrhage (ICH). Recently, mounting evidence has indicated that the ultra-early stage (<3 h), serving as the primary phase of ICH, plays a pivotal role and may even surpass other stages in terms of its significance. Therefore, uncovering the metabolic alterations induced by ICH in the ultra-early stage is of crucial importance.
View Article and Find Full Text PDFEarly brain injury (EBI) following subarachnoid hemorrhage (SAH) is characterized by rapid development of neuron apoptosis and dysregulated inflammatory response. Microglia efferocytosis plays a critical role in the clearance of apoptotic cells, attenuation of inflammation, and minimizing brain injury in various pathological conditions. Here, using a mouse SAH model, we aim to investigate whether microglia efferocytosis is involved in post-SAH inflammation and to determine the underlying signaling pathway.
View Article and Find Full Text PDFExisting treatments for intracerebral hemorrhage (ICH) are unable to satisfactorily prevent development of secondary brain injury after ICH and multiple pathological mechanisms are involved in the development of the injury. In this study, we aimed to identify novel genes and proteins and integrated their molecular alternations to reveal key network modules involved in ICH pathology. A total of 30 C57BL/6 male mice were used for this study.
View Article and Find Full Text PDFAge is a well-known risk factor that is independently associated with poor outcomes after intracerebral hemorrhage (ICH). However, the interrelationship between age and poor outcomes after ICH is not well defined. In this study, we aimed to investigate this relationship based on collagenase-induced ICH mice models.
View Article and Find Full Text PDFFront Aging Neurosci
March 2022
Mitochondrial dysfunction has been regarded as one of the major contributors of ischemic neuronal death after stroke. Recently, intercellular mitochondrial transfer between different cell types has been widely studied and suggested as a potential therapeutic approach. However, whether mitochondria are involved in the neuron-glia cross-talk following ischemic stroke and the underlying mechanisms have not been explored yet.
View Article and Find Full Text PDFObjective: Hyperglycemia is often observed in the patients after acute stroke. This study aims to elucidate the potential effect and mechanism of hyperglycemia by screening microRNAs expression in intracerebral hemorrhage mice.
Methods: We employed the collagenase model of intracerebral hemorrhage.
Neuroinflammation is a major pathophysiological factor that results in the development of brain injury after cerebral ischemia/reperfusion. Downregulation of microRNA (miR)-455-5p after ischemic stroke has been considered a potential biomarker and therapeutic target for neuronal injury after ischemia. However, the role of miR-455-5p in the post-ischemia/reperfusion inflammatory response and the underlying mechanism have not been evaluated.
View Article and Find Full Text PDFBackground And Purpose: Sirt5 (Sirtuin 5) desuccinylates multiple metabolic enzymes and plays an important role in maintaining energy homeostasis. The goal of this study was to determine whether Sirt5-mediated desuccinylation restores the energy metabolism and protects brain against subarachnoid hemorrhage (SAH).
Methods: Male C57BL/6 or Sirt5 mice were used.
In acute stroke management, time window has been rigidly used as a guide for decades and the reperfusion treatment is only available in the first few limited hours. Recently, imaging-based selection of patients has successfully expanded the treatment window out to 16 and even 24 h in the DEFUSE 3 and DAWN trials, respectively. Recent guidelines recommend the use of imaging techniques to guide therapeutic decision-making and expanded eligibility in acute ischemic stroke.
View Article and Find Full Text PDFBackground: Stroke activates the immune system and induces brain infiltration by immune cells, aggravating brain injury. Poststroke immunomodulation via (S1P-)receptor modulation is beneficial; however, the S1P-modulator in clinical use (FTY-720) is unspecific, and undesirable side effects have been reported. Previously, we tested effects of a novel selective S1P-receptor modulator, Siponimod, on ICH-induced brain injury in acute stage of the disease.
View Article and Find Full Text PDFIschemic stroke is one of the main causes of mortality and disability worldwide. However, efficient therapeutic strategies are still lacking. Stem/progenitor cell-based therapy, with its vigorous advantages, has emerged as a promising tool for the treatment of ischemic stroke.
View Article and Find Full Text PDFGerminal matrix hemorrhage (GMH) is a detrimental form of neonatal CNS injury. Following GMH-mediated eNOS inhibition, inflammation arises, contributing to GMH-induced brain injury. We investigated the beneficial effects of Serelaxin, a clinical tested recombinant Relaxin-2 protein, on brain injury after GMH in rats.
View Article and Find Full Text PDFBackground and Purpose- Perihemorrhagic edema (PHE) is associated with poor outcome after intracerebral hemorrhage (ICH). Infiltration of immune cells is considered a major contributor of PHE. Recent studies suggest that immunomodulation via S1PR (sphingosine-1-phosphate receptor) modulators improve outcome in ICH.
View Article and Find Full Text PDFMicroglia participate in bi-directional control of brain repair after stroke. Previous studies have demonstrated that hydrogen protects brain after ischemia/reperfusion (I/R) by inhibiting inflammation, but the specific mechanism of anti-inflammatory effect of hydrogen is poorly understood. The goal of our study is to investigate whether inhalation of high concentration hydrogen (HCH) is able to attenuate I/R-induced microglia activation.
View Article and Find Full Text PDFMicroRNAs (miRNAs) have been widely reported to induce posttranscriptional gene silencing and led to an explosion of new strategies for the treatment of human disease. It has been reported that the expression of MicroRNA-132 (miR-132) are altered both in the blood and brain after stroke. However, the effect of miR-132 on blood-brain barrier (BBB) disruption in ischemia stroke has not been studied.
View Article and Find Full Text PDFJ Appl Physiol (1985)
April 2019
Decompression sickness (DCS) occurs because of an excessively rapid and extensive reduction of the ambient pressure. Bubble-induced spinal cord ischemia is generally considered as a part of neurological DCS pathogenesis. Because helium preconditioning (HPC) recently demonstrated beneficial properties against ischemic damage, we hypothesized that HPC may decrease the neurological deficits of DCS in rats.
View Article and Find Full Text PDFStroke is the result of blockage or rupture of blood vessels in the brain and is the leading cause of death and disability in the world. Currently only a very limited number of therapeutic approaches are available for treatment of stroke patients, and the vast majority of neuroprotective agents that tested positively in pre-clinical studies failed in clinical trials. In recent years, the clinical value of the use of exosomes for stroke treatment has received widespread attention due their unique characteristics such as low immunogenicity, low toxicity and biodegradability, ability to cross the blood-brain barrier (BBB), and their important role in communication between cells.
View Article and Find Full Text PDFDisruption of the blood-brain barrier results in the formation of edema and contributes to the loss of neurological function following intracerebral hemorrhage (ICH). This study examined insulin-like growth factor-1 (IGF-1) as a treatment and its mechanism of action for protecting the blood-brain barrier after ICH in mice. 171 Male CD-1 mice were subjected to ICH via collagenase or autologous blood.
View Article and Find Full Text PDF