Publications by authors named "Manabu Mizutani"

Introduction: The manufacture of cell-based products requires assuring sterility through all processes, with aseptic processing in a cleanroom. The environment consists of a critical processing zone (CPZ) that can ensure a level of cleanliness that allows cell culture containers to be opened, and a support zone (SZ) adjacent to it and accessed by an operator. In this study, an environment for cell manufacturing was proposed by designing an air mass balance in an aseptic processing area (APA).

View Article and Find Full Text PDF

Recent developments for the manufacturing of cell-based products have focused on the advancement of products to clinical trials or commercialization, with awareness of the importance of cost-based effectiveness in cell manufacturing. The mechanization of cell-processing operations is advantageous for the reproducibility and stability of product quality and is thought to reduce the cost-of-goods through the life cycle of the product in a scale-up system; however, few cases of the implementation exist. This study developed an estimation method for the resource expenditure of cell-processing operations in the manufacturing of cell-based products.

View Article and Find Full Text PDF

To prepare an autologous cell-based product in a cell processing facility, the raw material, which is collected from a patient, must first be shipped from a medical institution to the facility. The quality of this raw material varies depending on the patient, and variations due to transport methods also occur. Because the quality must be uniform and manufacturing processes need to be adjusted to account for these variations, determining the effect of shipment conditions on raw materials is very important for estimating cell manufacturability in the process design.

View Article and Find Full Text PDF

Preventing the contamination of processed cells is required for achieving reproducible manufacturing. A droplet is one of the potential causes contamination in cell manufacturing. The present study elucidates the formation mechanism and characteristics of droplets based on the observation and detection of droplets on the base surface of the biological safety cabinet (BSC) where cell processing is conducted under unidirectional airflow.

View Article and Find Full Text PDF

Introduction: Regenerative therapy is a developing field in medicine. In the production of cell products for these therapies, hygienic management is even more critical than in the production of a chemical drug. At the same time, however, care is required with the use of decontamination agents, considering their effects on cell viability and characteristics.

View Article and Find Full Text PDF

Introduction: Current production facilities for Cell-Based Health care Products (CBHPs), also referred as Advanced-Therapy Medicinal Products or Regenerative Medicine Products, are still dependent on manual work performed by skilled workers. A more robust, safer and efficient manufacturing system will be necessary to meet the expected expansion of this industrial field in the future. Thus, the 'flexible Modular Platform (fMP)' was newly designed to be a true "factory" utilizing the state-of-the-art technology to replace conventional "laboratory-like" manufacturing methods.

View Article and Find Full Text PDF

Cell therapy and regenerative medicine technologies require strict cell manufacturing procedures to be defined and addressed. Maintenance of the aseptic environment is critical to preclude extrinsic contamination risks, similar to conventional pharmaceutical manufacturing. However, intrinsic contamination risks exist in all cell manufacturing processes owing to the use of cells as the raw materials that cannot be sterilized, thus giving rise to the primary and secondary risks of cell contamination and cross-contamination, respectively.

View Article and Find Full Text PDF

Temperature-responsive culture surfaces make it possible to harvest transplantable carrier-free cell sheets. Here, we applied temperature-responsive polymer for polycarbonate surfaces with previously developed closed culture devices for an automated culture system in order to fabricate transplantable stratified epithelial cell sheets. Histological and immunohistochemical analyses and colony-forming assays revealed that corneal epithelial and oral mucosal epithelial cell sheets could be harvested with the temperature-responsive closed culture devices.

View Article and Find Full Text PDF

Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this.

View Article and Find Full Text PDF

Background: Esophageal stenosis is one of the major complications of aggressive endoscopic resection. Tissue-engineered epithelial cell grafts have demonstrated effectiveness in promoting re-epithelialization and suppressing inflammation causing esophageal scarring and stenosis after endoscopic submucosal dissection (ESD) in an animal model.

Objective: To confirm the reproducibility and efficacy of a human oral mucosal epithelial cell (hOMEC) sheet cultured on temperature-responsive surface in conformity with Good Manufacturing Practice guidelines.

View Article and Find Full Text PDF

Periodontal-ligament-derived cells (PDL cells) have stem-cell-like properties and, when implanted into periodontal defects in vivo, can induce periodontal regeneration including the formation of new bone, cementum, and periodontal ligament. We have previously demonstrated that PDL cell sheets, harvested from temperature-responsive cell culture dishes, have a great potential for periodontal regeneration. The purpose of this study has been to validate the safety and efficacy of human PDL (hPDL) cell sheets for use in clinical trials.

View Article and Find Full Text PDF

Advanced micromedical devices may require computer-aided photofabrication, by which microarchitectural surface design and entire macroshaped body design are feasible. Liquid acrylate-endcapped poly(epsilon-caprolactone-co-trimethylene carbonate)s, poly(CL/TMC)s, prepared using trimethylene glycol (TMG) or poly(ethylene glycol) (PEG) as an initiator and an acrylate group for subsequent terminal capping, were used as photocurable copolymers. The stereolithographically microarchitectured photoconstructs were prepared using a custom-designed apparatus with a moving ultraviolet (UV) light pen driven by a computer-assisted design program.

View Article and Find Full Text PDF

Photocurable liquid biodegradable copolymers were prepared by ring-opening copolymerization of epsilon-caprolactone (CL) and trimethylene carbonate (TMC) in the presence of a multifunctional hydroxyl group-bearing substance (di-, tri-, and tetra-functional alcohol and poly(ethylene glycol) (PEG) and its four-branched derivative) as an initiator and subsequent endcapping with acryloyl chloride at their hydroxyl terminals. These multifunctional, viscous liquid copolymers (molecular weights; approximately 2 x 10(3) to 7 x 10(3) g/mol) were converted to crosslinked solids by visible-light irradiation in the presence of camphorquinone as an initiator. The photocuring rate of these copolymers was enhanced by both higher functionality and lower molecule weight of the copolymers used.

View Article and Find Full Text PDF

The unique chiral calixarenes were successfully synthesized by the following two methods: the Williamson ether synthesis and a stepwise ether cleavage with a mild Lewis acid. The high regioselectivity is recognized by the latter stepwise method. The ionophores having oligoethylene glycol unit efficiently extracted larger alkali metal ions like K+, Rb+, and Cs+ than smaller ones like Li+ and Na+.

View Article and Find Full Text PDF

Photoreactive phenylazide-end-capped liquid copolymers were prepared by ring-opening copolymerization of epsilon-caprolactone (CL) and trimethylene carbonate (TMC) at an equimolar monomer feed ratio in the presence of a polyol, namely, a low-molecular-weight alcohol (di-, tri-, and tetraol) or poly(ethylene glycol) (PEG) as an initiator and tin(II) 2-ethylhexanoate as a catalyst, followed subsequently by phenylazide derivatization at their hydroxyl terminus. These tri- and tetrabranched liquid copolymers (precursors) with a molecular weight from approximately 2500 to 7000 g/mol were cross-linked to yield insoluble solids by ultraviolet (UV) light irradiation. The photocuring rate increased with increasing functionality of phenylazide and UV intensity and decreasing thickness of the liquid film of precursors.

View Article and Find Full Text PDF

Liquid photoreactive poly(epsilon-caprolactone-co-trimethylene carbonate)s endcapped with a coumarin group [coumarinated poly(CL/TMC)s] were prepared using tetra-functional hydroxylated substances such as pentaerythritol or four-branched poly(ethylene glycol), b-PEG. These coumarinated copolymers are tetra-branched and exist as a viscous liquid (MW 5 x10(3) approximately 7 x 10(3)). They were photocured by ultraviolet (UV) light irradiation to obtain a swelling or nonswelling solid under water, depending on the type of initiator used.

View Article and Find Full Text PDF

Coumarin-endcapped tetrabranched liquid copolymers composed of epsilon-caprolactone and trimethylene carbonate (TMC), prepared using pentaerythritol or four-branched poly(ethylene glycol) (PEG) as an initiator, were ultraviolet irradiated to produce photocured solid biodegradable copolymers. The hydrolytic degradation behaviors of photocured films were determined from the weight loss of the films. The initial hydrolysis rate (determined for up to 24 h using a quartz crystal microbalance) was enhanced with aqueous solutions of higher pH.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: