The ROMK1 K channel, a member of the ROMK channel family, is the major candidate for the K secretion pathway in the renal cortical collecting duct (CCD). ROMK1 possesses a PDZ domain-binding motif at its C-terminus that is considered a modulator of ROMK1 expression via interaction with Na/H exchange regulatory factor (NHERF) 1 and NHERF2 scaffold protein. Although NHERF1 is a potential binding partner of the ROMK1 K channel, the interaction between NHERF1 and K channel activity remains unclear.
View Article and Find Full Text PDFProinflammatory cytokines affect several cell functions via receptor-mediated processes. In the kidney, functions of transporters and ion channels along the nephron are also affected by some cytokines. Among these, alteration of activity of potassium ion (K(+)) channels induces changes in transepithelial transport of solutes and water in the kidney, since K(+) channels in tubule cells are indispensable for formation of membrane potential which serves as a driving force for the transepithelial transport.
View Article and Find Full Text PDFWe investigated the effect of interleukin-1β (IL-1β) on activity of an inwardly rectifying K+ channel in cultured human proximal tubule cells (RPTECs), using the patch-clamp technique and Fura-2 Ca2+ imaging. IL-1β (15 pg/ml) acutely reduced K+ channel activity in cell-attached patches. This effect was blocked by the IL-1 receptor antagonist (20 ng/ml), an inhibitor of phospholipase C, neomycin (300 μM), and an inhibitor of protein kinase C (PKC), GF109203X (500 nM).
View Article and Find Full Text PDFClin Exp Nephrol
February 2012
Renal tubular potassium (K(+)) channels play important roles in the formation of cell-negative potential, K(+) recycling, K(+) secretion, and cell volume regulation. In addition to these physiological roles, it was reported that changes in the activity of renal tubular K(+) channels were involved in exacerbation of renal cell injury during ischemia and endotoxemia. Because ischemia and endotoxemia stimulate production of cytokines in immune cells and renal tubular cells, it is possible that cytokines would affect K(+) channel activity.
View Article and Find Full Text PDFRoles of calcineurin (CaN), a Ca(2+)/calmodulin- (CaM-) dependent protein phosphatase, and Ca(2+)/CaM-dependent protein kinase-II (CaMKII) in modulating K(+) channel activity and the intracellular Ca(2+) concentration ([Ca(2+)](i)) have been investigated in renal tubule epithelial cells. The channel current through the cell membrane was recorded with the patch-clamp technique, and [Ca(2+)](i) was monitored using fura-2 imaging. We found that a CaN-inhibitor, cyclosporin A (CyA), lowered the K(+) channel activity and elevated [Ca(2+)](i), suggesting that CyA closes K(+) channels and opens Ca(2+)-release channels of the cytosolic Ca(2+)-store.
View Article and Find Full Text PDFWe examined the mechanisms involved in the [Ca(2+)](i) response to the extracellular hypotonicity in the principal cells of freshly isolated rat cortical collecting duct (CCD), using Fura-2/AM fluorescence imaging. Reduction of extracellular osmolality from 305 (control) to 195 mosmol/kgH(2)O (hypotonic) evoked transient increase in [Ca(2+)](i) of principal cells of rat CCDs. The [Ca(2+)](i) increase was markedly attenuated by the removal of extracellular Ca(2+)(.
View Article and Find Full Text PDFActivity of an inwardly rectifying K(+) channel with inward conductance of about 40 pS in cultured human renal proximal tubule epithelial cells (RPTECs) is regulated at least in part by protein phosphorylation and dephosphorylation. In this study, we examined involvement of calcineurin (CaN), a Ca(2+)/calmodulin (CaM)-dependent phosphatase, in modulating K(+) channel activity. In cell-attached mode of the patch-clamp technique, application of a CaN inhibitor, cyclosporin A (CsA, 5 microM) or FK520 (5 microM), significantly suppressed channel activity.
View Article and Find Full Text PDFThe activity of an inwardly rectifying K(+) channel in cultured human renal proximal tubule cells (RPTECs) is stimulated and inhibited by nitric oxide (NO) at low and high concentrations, respectively. In this study, we investigated the effects of IFN-gamma, one of the cytokines which affect the expression of inducible NO synthase (iNOS), on intracellular NO and channel activity of RPTECs, using RT-PCR, NO imaging, and the cell-attached mode of the patch-clamp technique. Prolonged incubation (24 h) of cells with IFN-gamma (20 ng/ml) enhanced iNOS mRNA expression and NO production.
View Article and Find Full Text PDFNitric oxide (NO) modulates the activity of an inwardly rectifying K(+) channel in cultured human proximal tubule cells. In this study, we investigated which NO synthase (NOS) isoform(s) was involved in the endogenous production of NO and hence the regulation of channel activity. The patch-clamp experiments using the cell-attached mode showed that a nonselective NOS inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 microM), suppressed channel activity, whereas a NOS substrate, L-arginine (500 microM), stimulated it.
View Article and Find Full Text PDFThe lactate (LAC), creatine (CRN), taurine (TAU), anserine (ANS) and carnosine (CAR) content of the masseter muscles (MM), long extensor muscles of digits (EDL) and soleus muscles (SOL) of young rats were determined using in vitro 1H-NMR spectroscopy to assess the significance of CRN, TAU, ANS and CAR in these muscles. The muscles of Wistar rats at the ages of 6, 12 and 18 weeks were dissected after decapitation and used for the metabolite analyses. The LAC and CAR content of all muscle groups showed no age dependence.
View Article and Find Full Text PDFThe temperature change of the fractional dissociation of imidazole (alpha-imidazole) in resting human lower leg muscles was measured noninvasively using (1)H-nuclear magnetic resonance spectroscopy at 3.0 and 1.5 T on five normal male volunteers aged 30.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
September 2004
We investigated the effects of nitric oxide (NO) on activity of the inwardly rectifying K(+) channel in cultured human proximal tubule cells, using the cell-attached mode of the patch-clamp technique. An inhibitor of NO synthases, N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 microM), reduced channel activity, which was restored by an NO donor, sodium nitroprusside (SNP; 10 microM) or 8-bromo-cGMP (8-BrcGMP; 100 microM). However, SNP failed to activate the channel in the presence of an inhibitor of soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM).
View Article and Find Full Text PDFThe Ca2+-activated and voltage-sensitive large conductance K+ channel (BK channel) with a slope conductance of about 300 pS is present in the surface membrane of cultured human renal proximal tubule epithelial cells (RPTECs). In this study we examined the effects of cytoplasmic pH (pH(i)) on activity and gating kinetics of the BK channel by using the inside-out configuration of the patch-clamp technique. At a constant cytoplasmic Ca(2+) concentration ([Ca2+]i), membrane depolarization raised channel open probability (P(o)), and lowering pH(i) shifted the P(o)-membrane potential (V(m)) relationship to the positive voltage direction.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2002
An ATP-regulated inwardly rectifying K(+) channel, whose activity is enhanced by PKA, is present in the plasma membrane of cultured human proximal tubule cells. In this study, we investigated the effects of PKG on this K(+) channel, using the patch-clamp technique. In cell-attached patches, bath application of a membrane-permeant cGMP analog, 8-bromoguanosine 3',5'-monophosphate (8-BrcGMP; 100 microM), stimulated channel activity, whereas application of a PKG-specific inhibitor, KT-5823 (1 microM), reduced the activity.
View Article and Find Full Text PDF