Cities warm up due to two main factors: global climate change and urbanization-induced warming (so-called, urban heat island effect). In the projection of future climate, coarse-resolution global climate models are not suitable for looking into the heterogeneous urban surface and their changes. On the other hand, regional climate models, which are capable of looking into cities in detail, have never been used to investigate the global urban climate.
View Article and Find Full Text PDFNumerical weather prediction models are progressively used to downscale future climate in cities at increasing spatial resolutions. Boundary conditions representing rapidly growing urban areas are imperative to more plausible future predictions. In this work, 1-km global anthropogenic heat emission (AHE) datasets of the present and future are constructed.
View Article and Find Full Text PDFUrban dwellers are at risk of heat-related mortality in the onset of climate change. In this study, future changes in heat-related mortality of elderly citizens were estimated while considering the combined effects of spatially-varying megacity's population growth, urbanization, and climate change. The target area is the Jakarta metropolitan area of Indonesia, a rapidly developing tropical country.
View Article and Find Full Text PDFAs urban population is forecast to exceed 60% of the world's population by 2050, urban growth can be expected. However, research on spatial projections of urban growth at a global scale are limited. We constructed a framework to project global urban growth based on the SLEUTH urban growth model and a database with a resolution of 30 arc-seconds containing urban growth probabilities from 2020 to 2050.
View Article and Find Full Text PDFAn outdoor summer study on thermal physiology along subjects' pathways was conducted in a Japanese city using a unique wearable measurement system that measures all the relevant thermal variables: ambient temperature, humidity, wind speed (U) and short/long-wave radiation (S and L), along with some physio-psychological parameters: skin temperature (T skin), pulse rate, subjective thermal sensation and state of body motion. U, S and L were measured using a globe anemo-radiometer adapted use with pedestrian subjects. The subjects were 26 healthy Japanese adults (14 males, 12 females) ranging from 23 to 74 years in age.
View Article and Find Full Text PDF