Publications by authors named "Mana Saleh Al Reshan"

Breast cancer, a prevalent and life-threatening disease, necessitates early detection for the effective intervention and the improved patient health outcomes. This paper focuses on the critical problem of identifying breast cancer using a model called Attention U-Net. The model is utilized on the Breast Ultrasound Image Dataset (BUSI), comprising 780 breast images.

View Article and Find Full Text PDF

The intrusion detection process is important in various applications to identify unauthorized Internet of Things (IoT) network access. IoT devices are accessed by intermediators while transmitting the information, which causes security issues. Several intrusion detection systems are developed to identify intruders and unauthorized access in different software applications.

View Article and Find Full Text PDF

Software vulnerabilities pose a significant threat to system security, necessitating effective automatic detection methods. Current techniques face challenges such as dependency issues, language bias, and coarse detection granularity. This study presents a novel deep learning-based vulnerability detection system for Java code.

View Article and Find Full Text PDF

In recent years, scientific data on cancer has expanded, providing potential for a better understanding of malignancies and improved tailored care. Advances in Artificial Intelligence (AI) processing power and algorithmic development position Machine Learning (ML) and Deep Learning (DL) as crucial players in predicting Leukemia, a blood cancer, using integrated multi-omics technology. However, realizing these goals demands novel approaches to harness this data deluge.

View Article and Find Full Text PDF

Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review.

View Article and Find Full Text PDF

A brain tumor is an unnatural expansion of brain cells that can't be stopped, making it one of the deadliest diseases of the nervous system. The brain tumor segmentation for its earlier diagnosis is a difficult task in the field of medical image analysis. Earlier, segmenting brain tumors was done manually by radiologists but that requires a lot of time and effort.

View Article and Find Full Text PDF

Breast cancer (BC) is the most common cancer among women, making it essential to have an accurate and dependable system for diagnosing benign or malignant tumors. It is essential to detect this cancer early in order to inform subsequent treatments. Currently, fine needle aspiration (FNA) cytology and machine learning (ML) models can be used to detect and diagnose this cancer more accurately.

View Article and Find Full Text PDF

Bone marrow (BM) is an essential part of the hematopoietic system, which generates all of the body's blood cells and maintains the body's overall health and immune system. The classification of bone marrow cells is pivotal in both clinical and research settings because many hematological diseases, such as leukemia, myelodysplastic syndromes, and anemias, are diagnosed based on specific abnormalities in the number, type, or morphology of bone marrow cells. There is a requirement for developing a robust deep-learning algorithm to diagnose bone marrow cells to keep a close check on them.

View Article and Find Full Text PDF

Due to the modern power system's rapid development, more scattered smart grid components are securely linked into the power system by encircling a wide electrical power network with the underpinning communication system. By enabling a wide range of applications, such as distributed energy management, system state forecasting, and cyberattack security, these components generate vast amounts of data that automate and improve the efficiency of the smart grid. Due to traditional computer technologies' inability to handle the massive amount of data that smart grid systems generate, AI-based alternatives have received a lot of interest.

View Article and Find Full Text PDF

The use of offensive terms in user-generated content on different social media platforms is one of the major concerns for these platforms. The offensive terms have a negative impact on individuals, which may lead towards the degradation of societal and civilized manners. The immense amount of content generated at a higher speed makes it humanly impossible to categorise and detect offensive terms.

View Article and Find Full Text PDF

The segmentation of gastrointestinal (GI) organs is crucial in radiation therapy for treating GI cancer. It allows for developing a targeted radiation therapy plan while minimizing radiation exposure to healthy tissue, improving treatment success, and decreasing side effects. Medical diagnostics in GI tract organ segmentation is essential for accurate disease detection, precise differential diagnosis, optimal treatment planning, and efficient disease monitoring.

View Article and Find Full Text PDF

Vehicular networks (VANETs) are intelligent transport subsystems; vehicles can communicate through a wireless medium in this system. There are many applications of VANETs such as traffic safety and preventing the accident of vehicles. Many attacks affect VANETs communication such as denial of service (DoS) and distributed denial of service (DDoS).

View Article and Find Full Text PDF

Acute Lymphocytic Leukemia is a type of cancer that occurs when abnormal white blood cells are produced in the bone marrow which do not function properly, crowding out healthy cells and weakening the immunity of the body and thus its ability to resist infections. It spreads quickly in children's bodies, and if not treated promptly it may lead to death. The manual detection of this disease is a tedious and slow task.

View Article and Find Full Text PDF

Pneumonia has been directly responsible for a huge number of deaths all across the globe. Pneumonia shares visual features with other respiratory diseases, such as tuberculosis, which can make it difficult to distinguish between them. Moreover, there is significant variability in the way chest X-ray images are acquired and processed, which can impact the quality and consistency of the images.

View Article and Find Full Text PDF

The segmentation of lungs from medical images is a critical step in the diagnosis and treatment of lung diseases. Deep learning techniques have shown great promise in automating this task, eliminating the need for manual annotation by radiologists. In this research, a convolution neural network architecture is proposed for lung segmentation using chest X-ray images.

View Article and Find Full Text PDF

Coronary heart disease has an intense impact on human life. Medical history-based diagnosis of heart disease has been practiced but deemed unreliable. Machine learning algorithms are more reliable and efficient in classifying, e.

View Article and Find Full Text PDF

The coronavirus pandemic, also known as the COVID-19 pandemic, is an ongoing virus. It was first identified on December 2019 in Wuhan, China, and later spread to 192 countries. As of now, 251,266,207 people have been affected, and 5,070,244 deaths are reported.

View Article and Find Full Text PDF