Publications by authors named "ManKi Son"

There is a pressing need for sensors and assays to monitor chemotherapeutic activity within the human body in real time to optimize drug dosimetry parameters such as timing, quantity, and frequency in an effort to maximize efficacy while minimizing deleterious cytotoxicity. Herein, we develop near-infrared fluorescent nanosensors based on single walled carbon nanotubes for the chemotherapeutic Temozolomide (TMZ) and its metabolite 5-aminoimidazole-4-carboxamide using Corona Phase Molecular Recognition as a synthetic molecular recognition technique. The resulting nanoparticle sensors are able to monitor drug activity in real-time even under conditions.

View Article and Find Full Text PDF

Fluorescent nanosensors hold the potential to revolutionize life sciences and medicine. However, their adaptation and translation into the in vivo environment is fundamentally hampered by unfavourable tissue scattering and intrinsic autofluorescence. Here we develop wavelength-induced frequency filtering (WIFF) whereby the fluorescence excitation wavelength is modulated across the absorption peak of a nanosensor, allowing the emission signal to be separated from the autofluorescence background, increasing the desired signal relative to noise, and internally referencing it to protect against artefacts.

View Article and Find Full Text PDF

Nanosensors have proven to be powerful tools to monitor single cells, achieving spatiotemporal precision even at molecular level. However, there has not been way of extending this approach to statistically relevant numbers of living cells. Herein, we design and fabricate nanosensor array in microfluidics that addresses this limitation, creating a Nanosensor Chemical Cytometry (NCC).

View Article and Find Full Text PDF

Dynamic measurements of steroid hormones in vivo are critical, but steroid sensing is currently limited by the availability of specific molecular recognition elements due to the chemical similarity of these hormones. In this work, a new, self-templating synthetic approach is applied using corona phase molecular recognition (CoPhMoRe) targeting the steroid family of molecules to produce near infrared fluorescent, implantable sensors. A key limitation of CoPhMoRe has been its reliance on library generation for sensor screening.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic cancer with limited treatment options. There is an urgent need for tools that monitor therapeutic responses in real time. Drugs such as gemcitabine and irinotecan elicit their therapeutic effect in cancer cells by producing hydrogen peroxide (HO).

View Article and Find Full Text PDF

Because the freshness of seafood determines its consumer preference and food safety, the rapid monitoring of seafood deterioration is considered essential. However, the conventional analysis of seafood deterioration using chromatography instruments and bacterial colony counting depends on time-consuming and food-destructive treatments. In this study, we demonstrate a non-destructive and rapid food freshness monitoring system by a triangular study of sensory evaluation, gas chromatography-mass spectroscopy (GC-MS), and a bioelectronic nose.

View Article and Find Full Text PDF

Food intake is the primary method for obtaining energy and component materials in the human being. Humans evaluate the quality of food by combining various facets of information, such as an item of food's appearance, smell, taste, and texture in the mouth. Recently, bioelectronic noses and tongues have been reported that use human olfactory and taste receptors as primary recognition elements, and nanoelectronics as secondary signal transducers.

View Article and Find Full Text PDF

Odors are perceived differently as a function of individual human experience, and communicating about odors between individuals is therefore very difficult. There is a need to classify and standardize odors, but appropriate tools have not yet been developed. A bioelectronic nose mimics human olfaction and detects target molecules with high sensitivity and selectivity.

View Article and Find Full Text PDF

Salmonella infection is the one of the major causes of food borne illnesses including fever, abdominal pain, diarrhea, and nausea. Thus, early detection of Salmonella contamination is important for our healthy life. Conventional detection methods for the food contamination have limitations in sensitivity and rapidity; thus, the early detection has been difficult.

View Article and Find Full Text PDF

A multiplexed bioelectronic sensor was developed for the purpose of rapid, on-site, and simultaneous detection of various target molecules. Olfactory and taste receptors were produced in Escherichia coli, and the reconstituted receptors were immobilized onto a multi-channel type carbon nanotube field-effect transistor. This device mimicked the human olfactory/taste system and simultaneously measured the conductance changes with high sensitivity and selectivity following treatment with various odor and taste molecules commonly known to be indicators of food contamination.

View Article and Find Full Text PDF

Background: Health problems in shift workers vary including obesity acting as a risk factor in cerebrovascular diseases. Recent studies have commonly determined the prevalence of obesity in shift workers on the basis of body mass index. The accuracy of BMI for diagnosing obesity are still limited apparently.

View Article and Find Full Text PDF

Here we propose a carbon nanotube (CNT) field-effect transistor (FET) functionalized with aquaporin-4 (AQP4) extracellular loop peptides for the rapid detection of AQP4 antibody without pretreatment. Neuromyelitis optica (NMO) is a rare disease of the central nerve system that affects the optic nerves and the spinal cord. NMO-IgG, a serum antibody in patients, is highly specific for NMO and targets AQP4.

View Article and Find Full Text PDF

A bioelectronic nose for the real-time assessment of water quality was constructed with human olfactory receptor (hOR) and single-walled carbon nanotube field-effect transistor (swCNT-FET). Geosmin (GSM) and 2-methylisoborneol (MIB), mainly produced by bacteria, are representative odor compounds and also indicators of contamination in the water supply system. For the screening of hORs which respond to these compounds, we performed CRE-luciferase assays of the two odorants in heterologous cell system.

View Article and Find Full Text PDF

Background: We report a case of a spray painter who developed malignant fibrous histiocytoma (MFH) of the maxillary sinus following long-term exposure to chromium, nickel, and formaldehyde, implying that these agents are probable causal agents of MFH.

Case Report: The patient developed right-sided prosopalgia that began twenty months ago. The symptom persisted despite medical treatment.

View Article and Find Full Text PDF

Melanin synthesis is a complex phenomenon which involves about 192 known gene products. Among them, MITF is a key transcription factor for tyrosinase, Trp1 and Trp2 proteins, which are essential for melanin biosynthesis. Thus, intervening inhibitor for the MITF-E-box complex formation can downregulate melanin synthesis.

View Article and Find Full Text PDF