Background: Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear.
View Article and Find Full Text PDFAcute and chronic itch are prevalent and incapacitating, yet the neural mechanisms underlying both acute and chronic itch are just starting to be unraveled. Activated transcription factor 4 (ATF4) belongs to the ATF/CREB transcription factor family and primarily participates in the regulation of gene transcription. Our previous study has demonstrated that ATF4 is expressed in sensory neurons.
View Article and Find Full Text PDFMechanical allodynia impinges on the life quality of patients. Hen Egg Lysozyme (HEL) is a substance extracted from eggs that is commonly used to inhibit bacterial activity. The role of HEL in regulating and treating pain is unclear.
View Article and Find Full Text PDFPurpose: Postmenopausal women often suffer from chronic pain, memory decline and mood depression. The mechanisms underlying the neuronal disorders are not fully understood, and effective treatment is still lacking.
Methods: Oral administration of magnesium-L-threonate was tested to treat the neuronal disorders in ovariectomized and aged female mice.
Effective treatments for patients suffering from heat hypersensitivity are lacking, mostly due to our limited understanding of the pathogenic mechanisms underlying this disorder. In the nervous system, activating transcription factor 4 (ATF4) is involved in the regulation of synaptic plasticity and memory formation. Here, we show that ATF4 plays an important role in heat nociception.
View Article and Find Full Text PDFAdults are more likely to suffer from chronic pain than minors, and its underlying mechanism remains unclear. SIRT1 an important age-related protein with function of lifespan extension; whether SIRT1 plays a role in the different pain vulnerability of adult and juvenile remains unclear. Here, we found that the expression level of SIRT1 in dorsal root ganglia (DRG) was related to the pain vulnerability.
View Article and Find Full Text PDFMechanical allodynia is a debilitating condition for millions of patients with chronic pain. Mechanical allodynia can manifest in distinct forms, including brush-evoked dynamic and filament-evoked static allodynia. In the nervous system, the forkhead protein Foxo1 plays a critical role in neuronal structures and functions.
View Article and Find Full Text PDFIt is well known that nuclear factor-kappaB (NF-κB) regulates neuronal structures and functions by nuclear transcription. Here, we showed that phospho-p65 (p-p65), an active form of NF-κB subunit, reversibly interacted with Na1.7 channels in the membrane of dorsal root ganglion (DRG) neurons of rats.
View Article and Find Full Text PDFCurrently there is no effective treatment available for clinical patients suffering from neuropathic pain induced by chemotherapy paclitaxel. Puerarin is a major isoflavonoid extracted from the Chinese medical herb kudzu root, which has been used for treatment of cardiovascular disorders and brain injury. Here, we found that puerarin dose-dependently alleviated paclitaxel-induced neuropathic pain.
View Article and Find Full Text PDFBulleyaconitine A, a diterpenoid alkaloid isolated from Aconitum bulleyanum plants, has been used for the treatment of chronic pain in China since 1985. Clinical studies show that the oral administration of bulleyaconitine A is effective for treating different kinds of chronic pain, including back pain, joint pain, and neuropathic pain with minimal side effect in human patients. The experimental studies have revealed that bulleyaconitine A at therapeutic doses potently inhibits the peripheral sensitization and central sensitization that underlie chronic pain and has no effect on acute pain.
View Article and Find Full Text PDFBackground Oral administration of Bulleyaconitine A, an extracted diterpenoid alkaloid from Aconitum bulleyanum plants, is effective for treating chronic pain in rats and in human patients, but the underlying mechanisms are poorly understood. Results As the hyperexcitability of dorsal root ganglion neurons resulting from the upregulation of voltage-gated sodium (Nav) channels has been proved critical for development of chronic pain, we tested the effects of Bulleyaconitine A on Nav channels in rat spared nerve injury model of neuropathic pain. We found that Bulleyaconitine A at 5 nM increased the threshold of action potentials and reduced the firing rate of dorsal root ganglion neurons in spared nerve injury rats but not in sham rats.
View Article and Find Full Text PDFN-type voltage-gated calcium (Cav2.2) channels are expressed in the central terminals of dorsal root ganglion (DRG) neurons, and are critical for neurotransmitter release. Cav2.
View Article and Find Full Text PDFOral Bulleyaconitine A (BLA) is effective for treating neuropathic pain in human patients, but the underlying mechanism is poorly understood. Here, we tested whether BLA blocked voltage-gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons. Compelling evidence shows that voltage-gated sodium channels are upregulated in uninjured DRG neurons but downregulated in injured ones following peripheral nerve injury.
View Article and Find Full Text PDFBortezomib is a first-line chemotherapeutic drug widely used for multiple myeloma and other nonsolid malignancies. Although bortezomib-induced persistent pain is easily diagnosed in clinic, the pathogenic mechanism remains unclear. Here, we studied this issue with use of a rat model of systemic intraperitoneal administration of bortezomib for consecutive 5days.
View Article and Find Full Text PDFClC-3 chloride channel/antiporter has been demonstrated to play an important role in synaptic transmission in central nervous system. However, its expression and function in sensory neurons is poorly understood. In present work, we found that ClC-3 is expressed at high levels in dorsal root ganglia (DRG).
View Article and Find Full Text PDF