Publications by authors named "Man-Soo Joun"

An experimental and numerical study on the ejector pin's mechanics during automatic multistage cold forging (AMSCF) of an automobile wheel nut is conducted. The traditional, decoupled die structural analysis method (DDSM) of analyzing die structures as one of the post-processing functions is criticized, which uses the tractions exerting on the die parts predicted from the forging simulation under the rigid die assumption. To cope with the matter of the DDSM, a multibody treatment scheme (MBTS) is proposed to simulate the AMSCF process, emphasizing the ejector pin's mechanics, using an implicit elastoplastic finite element method.

View Article and Find Full Text PDF

An investigation of austenite grain growth (AGG) during the isothermal heat treatment of low-alloy steel is conducted. The goal is to uncover the effect of time, temperature, and initial grain size on SA508-III steel grain growth. Understanding this relationship enables the optimization of the time and temperature of the heat treatment to achieve the desired grain size in the studied steel.

View Article and Find Full Text PDF

The flow behaviors of metallic materials are sensitive to state variables, including strain, strain rate, and temperature. In particular, the temperature effect on the flow behavior is of great importance. The flow information is usually obtained at the sample strain rates and temperatures from the hot cylinder compression test.

View Article and Find Full Text PDF

We focus on the importance of accurately describing the flow behaviors of metallic materials to be cold formed; we refer to several valuable examples. We review the typical experimental methods by which flow curves are obtained, in addition to several combined experimental-numerical methods. The characteristics of four fundamental flow models including the Ludwik, Voce, Hollomon, and Swift models are explored in detail.

View Article and Find Full Text PDF

Traditional fatigue fracture theory and practice focus principally on structural design. It is thus too conservative and inappropriate when used to predict the high-cycle fatigue life of dies used for metal forming, especially cold forging. We propose a novel mean stress correction model and diagram to predict the high-cycle fatigue lives of cold forging dies, which focuses on the upper part of the equivalent fatigue strength curve.

View Article and Find Full Text PDF

We develop a new flow model based on the Swift method, which is both versatile and accurate when used to describe flow stress in terms of strain hardening and damage softening. A practical issue associated with flow stress at room temperature is discussed in terms of tensile testing of a cylindrical specimen; we deal with both material identification and finite element predictions. The flow model has four major components, namely the stress before, at, and after the necking point and around fracture point.

View Article and Find Full Text PDF

The traditional theory of ductile fracture has limitations for predicting crack generation during a cold shell nosing process. Various damage criteria are employed to explain fracture and failure in the nose part of a cold shell. In this study, differences in microstructure among fractured materials and analysis of their surfaces indicated the occurrence of brittle fractures.

View Article and Find Full Text PDF

SUS304 stainless steel is characterized by combined tensile and compression testing, with an emphasis on flow stress at higher strain and temperature. The plastic deformation behavior of SUS304 from room temperature to 400 °C is examined and a general approach is used to express flow stress as a closed-form function of strain, strain rate, and temperature; this is optimal when the strain is high, especially during automatic multi-stage cold forging. The fitted flow stress is subjected to elastothermoviscoplastic finite element analysis (FEA) of an automatic multi-stage cold forging process for an SUS304 ball-stud.

View Article and Find Full Text PDF

A three-dimensional finite element model of a femoral head was developed using a surface modeling technique. The distribution of the stress index S (S = effective stress / yield strength, sigma/sigmaY) in various sizes of segmental osteonecrosis was assessed. The stress index of the femoral head was within physiological limits when the necrotic angle was less than 110 degrees.

View Article and Find Full Text PDF