Publications by authors named "Man-Sha Wu"

Synthetic DNAzyme-based structures enable dynamic cell regulation. However, engineering an effective and targeted DNAzyme-based structure to perform customizable multistep regulation remains largely unexplored. Herein, we designed a membrane-anchored DNAzyme-based molecular machine to implement dynamic inter- and intracellular cascade regulation, which realizes efficient T-cell/cancer cell interactions and subsequent receptor mediated cancer cell uptake.

View Article and Find Full Text PDF

Oxidative stress is involved in various signaling pathways and serves a key role in inducing cell apoptosis. Therefore, it is significant to monitor oxidative stress upon drug release for the assessment of therapeutic effects in cancer cells. Herein, a glutathione (GSH)-responsive surface-enhanced Raman scattering (SERS) nanoplatform is proposed for ultra-sensitively monitoring the substance related with oxidative stress (hydrogen sulfide, HS), depleting reactive sulfur species and releasing anticancer drugs to amplify oxidative stress for tumor apoptosis.

View Article and Find Full Text PDF

Nanomaterials have presented great potential for cancer therapy. However, their therapeutic efficacy is not always satisfied because of inefficient biocompatibility and targeting efficacy. Here, we report engineered extracellular vesicle (EV)-encapsuled nanoreactors for the targeting and killing of cancer cells.

View Article and Find Full Text PDF

ATP and reactive oxygen species (ROS) are considered significant indicators of cell apoptosis. However, visualizing the interplay between apoptosis-related ATP and ROS is challenging. Herein, we developed a metal-organic framework (MOF)-based nanoprobe for an apoptosis assay using duplex imaging of cellular ATP and ROS.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is crucial for the regulation of multiple cellular processes, such as cellular responses to stress and protein synthesis, folding, and posttranslational modification. Nevertheless, monitoring ER physiological activity remains challenging due to the lack of powerful detection methods. Herein, we built a two-stage cascade recognition process to achieve dynamic visualization of ER stress in living cells based on a fluorescent carbon dot (CD) probe, which is synthesized by a facile one-pot hydrothermal method without additional modification.

View Article and Find Full Text PDF