Zhongguo Ying Yong Sheng Li Xue Za Zhi
July 2019
Epileptic spike is an indicator of hyper-excitability and hyper-synchrony in the neural networks. The inhibitory effects of spikes on theta rhythms (4-8 Hz) might be helpful to understand the mechanism of epileptic damage on the cognitive functions. To quantitatively evaluate the inhibitory effects of spikes on theta rhythms, intracerebral electroencephalogram (EEG) recordings with both sporadic spikes (SSs) and spike-free transient period between adjacent spikes were selected in 4 patients in the status of rapid eyes movement (REM) sleep with temporal lobe epilepsy (TLE) under the pre-surgical monitoring.
View Article and Find Full Text PDFEpilepsy clinically has an inhibitory impact on cognitive function, but whether it is associated with epileptogenesis is unclear. Since the epileptic spike characterizes temporal lobe epilepsy (TLE), the present study was aimed to analyze the transient effects of sporadic spikes (SSs) on theta rhythm during epileptogenesis. The local field potentials (LFPs) were recorded in CA1 area in four rats with the pilocarpine injections during exploration, and theta phase stability and power were globally estimated around SSs, also during prolonged period without SS (both as experiments) as well as pre-injections (control).
View Article and Find Full Text PDF