Genetic Programming is a method to automatically create computer programs based on the principles of evolution. The problem of deceptiveness caused by complex dependencies among components of programs is challenging. It is important because it can misguide Genetic Programming to create suboptimal programs.
View Article and Find Full Text PDFBackground: Inferring gene regulatory network (GRN) has been an important topic in Bioinformatics. Many computational methods infer the GRN from high-throughput expression data. Due to the presence of time delays in the regulatory relationships, High-Order Dynamic Bayesian Network (HO-DBN) is a good model of GRN.
View Article and Find Full Text PDFInferring the gene regulatory network (GRN) is crucial to understanding the working of the cell. Many computational methods attempt to infer the GRN from time series expression data, instead of through expensive and time-consuming experiments. However, existing methods make the convenient but unrealistic assumption of causal sufficiency, i.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
October 2012
This paper describes a novel knowledge discovery and data mining framework dealing with nonlinear interactions among domain attributes. Our network-based model provides an effective and efficient reasoning procedure to perform prediction and decision making. Unlike many existing paradigms based on linear models, the attribute relationship in our framework is represented by nonlinear nonnegative multiregressions based on the Choquet integral.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
October 2012
As a typical combinatorial optimization problem, the traveling salesman problem (TSP) has attracted extensive research interest. In this paper, we develop a self-organizing map (SOM) with a novel learning rule. It is called the integrated SOM (ISOM) since its learning rule integrates the three learning mechanisms in the SOM literature.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2005
The scalability problem in data mining involves the development of methods for handling large databases with limited computational resources such as memory and computation time. In this paper, two scalable clustering algorithms, bEMADS and gEMADS, are presented based on the Gaussian mixture model. Both summarize data into subclusters and then generate Gaussian mixtures from their data summaries.
View Article and Find Full Text PDF