Publications by authors named "Man-Kyu Shim"

Proteolysis-targeting chimeras (PROTACs) are a promising technique for the specific and durable degradation of cancer-related proteins via the ubiquitin-proteasome system in cancer treatment. However, the therapeutic efficacy of PROTACs is restricted due to their hydrophobicity, poor cell permeability and insufficient tumor-targeting ability. Herein, we develop the self-assembled peptide-derived PROTAC nanoparticles (PT-NPs) for precise and durable programmed death-ligand 1 (PD-L1) degradation in targeted tumors.

View Article and Find Full Text PDF

Oral chemotherapy has been emerging as a hopeful therapeutic regimen for the treatment of various cancers because of its high safety and convenience, lower costs, and high patient compliance. Despite the current advancements in nanoparticle-mediated drug delivery, numerous anticancer drugs susceptible to the hostile gastrointestinal (GI) environment exhibit poor permeability across the intestinal epithelium, rendering them ineffective in providing therapeutic benefits. In this paper, we focus on harnessing milk-derived extracellular vesicles (mEVs) for gut-to-tumor oral drug delivery by leveraging their high bioavailability.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a light-triggered PROTAC (LPN) nanoassembly that targets and degrades the immunosuppressive enzyme IDO in tumor environments, aiming to enhance cancer treatment effectiveness.
  • LPNs are designed to self-assemble from specific components, allowing them to accumulate in tumors, stay inactive initially, and release active PROTACs when triggered by the biomarker cathepsin B.
  • Upon light activation, this system not only induces cell death in cancer cells but also counters immunosuppression, which may significantly reduce tumor growth and recurrence while combining multiple therapeutic approaches for better cancer immunotherapy.
View Article and Find Full Text PDF

While mesalamine, a 5-aminosalicylic acid (5-ASA), is pivotal in the management of inflammatory bowel disease (IBD) through both step-up and top-down approaches in clinical settings, its widespread utilization is limited by low bioavailability at the desired site of action due to rapid and extensive absorption in the upper gastrointestinal (GI) tract. Addressing mesalamine's pharmacokinetic challenges, here, we introduce nanoassemblies composed exclusively of a mesalamine prodrug that pairs 5-ASA with a mucoadhesive and cathepsin B-cleavable peptide. In an IBD model, orally administered nanoassemblies demonstrate enhanced accumulation and sustained retention in the GI tract due to their mucoadhesive properties and the epithelial enhanced permeability and retention (eEPR) effect.

View Article and Find Full Text PDF

Photothermal therapy (PTT) at mild temperatures ranging from 44 to 45 °C holds tremendous promise as a strategy for inducing potent immunogenic cell death (ICD) within tumor tissues, which can reverse the immunosuppressive tumor microenvironment (ITM) into an immune-responsive milieu. However, accurately and precisely controlling the tumor temperature remains a formidable challenge. Here, we report the precision photothermal immunotherapy by using silica-coated gold nanorods (AuNR@SiO), and investigating the optimal administration routes and treatment protocols, which enabled to achieve the sustained and controlled mild heating within the tumor tissues.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) therapy targeting PD-L1 monoclonal antibody (mAb) has shown extensive clinical benefits in the diverse types of advanced malignancies. However, most patients are completely refractory to ICB therapy owing to the PD-L1 recycling mechanism. Herein, we propose photo-induced crosslinked and anti-PD-L1 peptide incorporated liposomes (immune checkpoint blockade liposomes; ICB-LPs) to promote PD-L1 multivalent binding for inducing lysosomal degradation of PD-L1 in tumor cells.

View Article and Find Full Text PDF

Background: Immunogenic cell death (ICD) is a crucial approach to turn immunosuppressive tumor microenvironment (ITM) into immune-responsive milieu and improve the response rate of immune checkpoint blockade (ICB) therapy. However, cancer cells show resistance to ICD-inducing chemotherapeutic drugs, and non-specific toxicity of those drugs against immune cells reduce the immunotherapy efficiency.

Methods: Herein, we propose cancer cell-specific and pro-apoptotic liposomes (Aposomes) encapsulating second mitochondria-derived activator of caspases mimetic peptide (SMAC-P)-doxorubicin (DOX) conjugated prodrug to potentiate combinational ICB therapy with ICD.

View Article and Find Full Text PDF

The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety.

View Article and Find Full Text PDF

Synergistic immunotherapy of immune checkpoint blockade (ICB) and immunogenic cell death (ICD) has shown remarkable therapeutic efficacy in various cancers. However, patients show low response rates and undesirable outcomes to these combination therapies owing to the recycling mechanism of programmed death-ligand 1 (PD-L1) and the systemic toxicity of ICD-inducing chemotherapeutic drugs. Herein, we propose all-in-one glycol chitosan nanoparticles (CNPs) that can deliver anti-PD-L1 peptide (PP) and doxorubicin (DOX) to targeted tumor tissues for a safe and more effective synergistic immunotherapy.

View Article and Find Full Text PDF

Background: Claudin-4 (CLDN4), a tight junction protein, is overexpressed in several types of cancer, and is considered a biomarker for cancer-targeted treatment. CLDN4 is not exposed in normal cells, but becomes accessible in cancer cells, in which tight junctions are weakened. Notably, surface-exposed CLDN4 has recently been found to act as a receptor for Clostridium perfringens enterotoxin (CPE) and fragment of CPE (CPE17) that binds to the second domain of CLDN4.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) therapy has shown remarkable outcomes along with multiple cases of complete regression in clinical practice. But unfortunately, most patients who have an immunosuppressive tumor immune microenvironment (TIME) respond poorly to these therapies. To improve the response rate of the patients, various treatment modalities that can boost cancer immunogenicity and remove immune tolerance have been combined with ICB therapies.

View Article and Find Full Text PDF
Article Synopsis
  • - Adoptive cell transfer (ACT) has shown success in treating blood cancers, but its effectiveness is hampered by issues like unclear tumor antigens and immune suppression from the tumor environment.
  • - The study introduces a method that uses cytotoxic T cells loaded with a photosensitizer (PS) called Temoporfin, enhancing their ability to generate reactive oxygen species (ROS) when exposed to visible light.
  • - Results from murine lymphoma models indicate that these PS-loaded T cells (PS-OT-1) significantly improve tumor growth inhibition when combined with light treatment compared to standard ACT, suggesting a promising new cancer treatment strategy.
View Article and Find Full Text PDF

Background: Glycol chitosan nanoparticles (CNPs) have emerged as an effective drug delivery system for cancer diagnosis and treatment. Although they have great biocompatibility owing to biodegradable chemical structure and low immunogenicity, sufficient information on in vivo toxicity to understand the potential risks depending on the repeated high-dose have not been adequately studied. Herein, we report the results of in vivo toxicity evaluation for CNPs focused on the number and dose of administration in healthy mice to provide a toxicological guideline for a better clinical application of CNPs.

View Article and Find Full Text PDF

Proteolysis-targeting chimeras (PROTACs) are rapidly emerging as a potential therapeutic strategy for cancer therapy by inducing the degradation of tumor-overexpressing oncogenic proteins. They can specifically catalyze the degradation of target oncogenic proteins by recruiting E3 ligases and utilizing the ubiquitin-proteasome pathway. Since their mode of action is universal, irreversible, recyclable, long-lasting, and applicable to 'undruggable' proteins, PROTACs are gradually replacing the role of conventional small molecular inhibitors.

View Article and Find Full Text PDF

Proteolysis-targeting chimeras (PROTACs) have recently been of great interest in cancer therapy. However, the bioavailability of PROTACs is considerably restricted due to their high hydrophobicity, poor cell permeability, and thereby low tumor targeting ability. Herein, esterase-cleavable maleimide linker (ECMal)-conjugated bromodomain 4 (BRD4)-degrading PROTAC (ECMal-PROTAC) is newly synthesized to exploit plasma albumin as an 'innate drug carrier' that can be accumulated in targeted tumor tissues.

View Article and Find Full Text PDF

A prodrug is bioreversible medication that is specifically converted to the active drugs by enzymes overexpressed in the tumor microenvironment, which can considerably reduce the chemotherapy-induced side effects. However, prodrug strategies usually have low antitumor efficacy compared to free drugs by delayed drug release. This is because they need time to be activated by enzymatic cleavage and they also cannot be fully recovered to the active drugs.

View Article and Find Full Text PDF

Background: Photodynamic therapy (PDT) is a promising strategy to promote antitumor immunity by inducing immunogenic cell death (ICD) in tumor cells. However, practical PDT uses an intense visible light owing to the shallow penetration depth of the light, resulting in immunosuppression at the tumor tissues.

Methods: Herein, we propose an implantable micro-scale light-emitting diode device (micro-LED) guided PDT that enables the on-demand light activation of photosensitizers deep in the body to potentiate antitumor immunity with mild visible light.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) with various sizes and morphologies have been extensively investigated for effective photothermal therapy (PTT) against multiple cancer types. However, a highly dynamic and complex tumor microenvironment (TME) considerably reduces the efficacy of PTT by limiting deep tumor penetration of AuNPs. Herein, we propose a mesenchymal stem cell (MSC)-mediated deep tumor delivery of gold nanorod (AuNR) for a potent PTT.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has shown remarkable therapeutic efficacy in a variety of cancers. However, patients exhibit unexpectedly low response rates to ICB therapy owing to the unwanted recycling and cellular abundance of PD-L1. Herein, rational design of PD-L1 multivalent binding liposome is investigated through PEGylated liposomes incorporating different ratios of PD-L1 binding peptide.

View Article and Find Full Text PDF

Background: Nanomedicine has emerged as a promising strategy for cancer treatment. The most representative nanomedicine used in clinic is PEGylated liposomal doxorubicin DOXIL, which is first FDA-approved nanomedicine. However, several shortcomings, such as low drug loading capacity, low tumor targeting, difficulty in mass production and potential toxicity of carrier materials, have hindered the successful clinical translation of nanomedicines.

View Article and Find Full Text PDF

A carrier-free prodrug nanoparticle has emerged as a potential approach to cancer therapy. It plays a vital role in enhancing the tumor targeting and therapeutic efficacy of the anticancer agent at sites of intention wherein the prodrug nanoparticle is potentially activated. Herein, five derivatives of cathepsin B-cleavable prodrugs are synthesized via chemically conjugating different cathepsin B-cleavable peptides (Phe-Arg-Arg-Gly, Phe-Arg-Arg-Leu, Phe-Arg-Arg-Leu-Gly, Phe-Leu-Arg-Arg-Gly) to doxorubicin (DOX).

View Article and Find Full Text PDF

Many preclinically tested nanoparticles in existing animal models fail to be directly translated into clinical applications because of their poor resemblance to human cancer. Herein, the enhanced permeation and retention (EPR) effect of glycol chitosan nanoparticles (CNPs) in different tumor microenvironments (TMEs) was compared using different pancreatic tumor models, including pancreatic cancer cell line (BxPC3), patient-derived cancer cell (PDC), and patient-derived xenograft (PDX) models. CNPs were intravenously injected into different tumor models, and their accumulation efficiency was evaluated using non-invasive near-infrared fluorescence (NIRF) imaging.

View Article and Find Full Text PDF

Introduction: Immune checkpoint blockade (ICB) therapy is now FDA-approved for the treatment of various tumor types. By removing inhibitory signals for T-cell activation and disrupting the immune escape mechanism of tumor cells, ICB therapy has shown considerable efficacy with complete tumor regression in patients. However, patients respond poorly to this therapy and show limited response rates owing to the immunosuppressive tumor microenvironment (ITM) in cold tumors.

View Article and Find Full Text PDF

Pancreatic cancer is a highly fatal disease that is becoming an increasingly leading cause of cancer-related deaths. In clinic, the most effective approach to treat pancreatic cancers is the combination treatment of several chemotherapeutic drugs, including fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX), but this approach is not adequate to manage patients due to their severe toxic side effects. Herein, we proposed light-activated monomethyl auristatin E (MMAE) prodrug nanoparticles for combinational photo-chemotherapy and optimized its applications for pancreatic cancer treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Albumin is a promising natural drug carrier that can enhance the effectiveness and targeting of anticancer treatments by improving their pharmacokinetics and enabling passive tumor targeting through the EPR effect.
  • *The most notable example is Abraxane, an FDA-approved formulation that uses human serum albumin to deliver the cancer drug paclitaxel, but many other albumin-based formulations have struggled with low delivery efficiency and potential toxicity.
  • *This review discusses various albumin-based drug delivery systems, their challenges, and recent developments aimed at improving their clinical translation and safety for better cancer treatment outcomes.
View Article and Find Full Text PDF