The key issues in the development of a microneedle patch as a tool for transdermal drug delivery are safety and delivery performance in addition to economical production. In this paper, novel fabrication methods for an inexpensive microneedle patch made of biocompatible polymer are reported, along with functional verifications for the fabricated microneedle patch through animal models. We combined the merits of in-line microneedles, i.
View Article and Find Full Text PDFThe elastic shear modulus G and swelling pressure ω are studied for a basic, pH-responsive hydrogel synthesized by crosslinking copolymerization of co-monomers hydroxypropyl methacrylate and N,N-dimethylaminoethyl methacrylate with crosslinker tetraethylene glycol dimethacrylate. Under normal conditions of use as a "smart" material, hydrogel swelling ratio Q and pH vary simultaneously, but here G and ω values are presented as a function of pH with Q held constant and vice-versa. At fixed pH, G decreases with increase in Q in a power law dependence, as predicted by the Flory-Rehner model.
View Article and Find Full Text PDFBiomacromolecules
August 2003
A new type of biosensor is proposed that combines the recognition properties of "intelligent" hydrogels with the sensitivity and reliability of microfabricated pressure transducers. In the proposed device, analyte-induced changes in the osmotic swelling pressure of an environmentally responsive hydrogel are measured by confining it within a small implantable enclosure between a rigid semipermeable membrane and the diaphragm of a miniature pressure transducer. Proof-of-principle tests of this device were performed in vitro using pH-sensitive hydrogels, with osmotic deswelling data for the same hydrogels used as a benchmark for comparison.
View Article and Find Full Text PDF