This study employs molecular dynamics (MD) simulations to investigate the adsorption and aggregation behavior of simple polyarginine cell-penetrating peptides (CPPs), specifically modeled as R peptides, at zwitterionic phosphocholine POPC membranes under varying ionic strengths of two peptide concentrations and two concentrations of NaCl and CaCl. The results reveal an intriguing phenomenon of R aggregation at the membrane, which is dependent on the ionic strength, indicating a salting-out effect. As the peptide concentration and ionic strength increase, peptide aggregation also increases, with aggregate lifetimes and sizes showing a corresponding rise, accompanied by the total decrease of adsorbed peptides at the membrane surface.
View Article and Find Full Text PDFAdsorption of arginine-rich positively charged peptides onto neutral zwitterionic phosphocholine (PC) bilayers is a key step in the translocation of those potent cell-penetrating peptides into the cell interior. In the past, we have shown both theoretically and experimentally that polyarginines adsorb to the neutral PC-supported lipid bilayers in contrast to polylysines. However, comparing our results with previous studies showed that the results often do not match even at the qualitative level.
View Article and Find Full Text PDFThe change in number densities of aqueous solutions of alkali chlorides should be qualitatively predictable. Typically, as cations get larger, the number density of the solution decreases. However, aqueous solutions of lithium and sodium chloride exhibit at ambient conditions practically identical number densities at equal molalities despite different ionic sizes.
View Article and Find Full Text PDF