Publications by authors named "Man Jia"

Theabrownin (TB), the primary pigment in Pu-erh tea, has shown potential in alleviating metabolic syndrome (MS), though its precise mechanisms remain unclear. This study investigated the effects of Pu-erh tea water extract (WE) and TB on high-fat diet (HFD)-induced MS in rats, focusing on miRNA regulation and gut microbiota composition. Both WE and TB significantly improved markers of MS, including dyslipidemia, insulin resistance, and inflammation.

View Article and Find Full Text PDF

The decline in sperm parameters among obese males has attracted significant scholarly interest. The intestinal microbiota plays a crucial role in obesity, and investigating the intestinal-reproductive axis may offer a novel molecular approach to addressing the decline in male sperm parameters caused by obesity. To clarify whether probiotics, either alone or in conjunction with metformin, can enhance sperm parameters in obese male mice and assess the underlying mechanisms involved.

View Article and Find Full Text PDF

As the predominant stromal cells in the ccRCC surrounding environment, cancer-associated fibroblasts (CAFs) have been established as supportive of tumor growth. However, the detailed molecular mechanisms underlying the supporting role of CAFs in ccRCC have not been well characterized. Evidence from the clustering consensus analysis, single-cell analysis, and the experimental results illustrate that CAF-derived FGF7 plays a crucial role as a signaling mediator between CAFs and ccRCC tumor cells.

View Article and Find Full Text PDF

Zwitterionic polymer brushes are not a practical choice since their ionic response mechanisms are unclear, despite their great potential for surface antifouling modification. Therefore, atomic force microscopy and molecular dynamics simulations investigated the ionic response of the surface electrical properties, hydration properties, and protein adhesion of three types of zwitterionic brushes. The surface of PMPC (poly(2-methacryloyloxyethyl phosphorylcholine)) and PSBMA (poly(sulfobetaine methacrylate)) zwitterionic polymer brushes in salt solution exhibits a significant accumulation of cations, which results in a positive shift in the surface potential.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second leading cause of cancer-related death among men in western countries. Evidence has indicated the significant role of the androgen receptor (AR) as the main driving factor in controlling the development of PCa, making androgen receptor inhibition (ARI) therapy a pivotal management approach. In addition, AR independent signaling pathways also contribute to PCa progression.

View Article and Find Full Text PDF

In this paper, a fast positioning platform (FPP) is proposed, able to meet simultaneously the requirements of large stroke and high frequency response, developed based on a PZT (piezoelectric actuator) and a quad-parallel flexible mechanism, for application in precision machining. The FPP is driven by a high-stiffness PZT and guided by a flexible hinge-based mechanism with a quad-parallel flexible hinge. The proposed quad-parallel flexible hinge mechanism can provide excellent planar motion capability with high stiffness and good guiding performance, thus guaranteeing outstanding dynamics characteristics.

View Article and Find Full Text PDF

Chitosan is a potentially suitable material for wound dressing, but is undesirably water-insoluble. Although chitosan can be modified to produce water-soluble derivatives, the best chitosan derivative for wound dressings remains unclear. The present study introduced three water-soluble chitosan derivatives, namely, carboxymethyl chitosan, quaternized chitosan (QCS), and carboxymethyl quaternized chitosan, and explored the physical properties, biochemical properties, and wound care effectiveness of films of these derivatives.

View Article and Find Full Text PDF

Biomass-based adhesives are gaining attention as environmentally friendly alternatives to toxic petroleum-based adhesives. However, biomass-based adhesives exhibit poor adhesive properties and are highly susceptible to failure in humid environments. In this study, a zein-based adhesive with high adhesive strength and good water resistance was prepared by optimizing the solvent composition and adding tannic acid.

View Article and Find Full Text PDF

Sodium alginate has good biocompatibility and is widely used in the study of drug carriers. In this paper, a method to prepare calcium alginate microspheres with high sphericity based on double emulsion droplets was proposed, in which sodium alginate is used as the innermost phase. By adjusting the density of the system, the double-emulsion droplets could be suspended in the collecting solution, leading to the homogeneous reaction between the sodium alginate droplets and the calcium ions.

View Article and Find Full Text PDF

Ionic current rectification (ICR) of charged conical nanopores has various applications in fields including nanofluidics, biosensing, and energy conversion, whose function is closely related to the dynamic response of nanopores. The occurrence of ICR originates from the ion enrichment and depletion in conical pores, whose formation is found to be affected by the scanning rate of voltages. Here, through time-dependent simulations, we investigate the variation of ion current under electric fields and the dynamic formation of ion enrichment and depletion, which can reflect the response time of conical nanopores.

View Article and Find Full Text PDF

The diverse properties reported for starch-based materials indicate their potential for use in the preparation of biodegradable flexible actuators. However, their natural brittleness and lack of durability after modification limit their practical application. Therefore, we propose a strategy for preparing flexible starch-based composites.

View Article and Find Full Text PDF

Excessive exudation from the wound site and the difficulty of determining the state of wound healing can make medical management more difficult and, in extreme cases, lead to wound deterioration. In this study, we fabricated a pH-sensitive colorimetric chronic wound dressing with self-pumping function using electrostatic spinning technology. It consisted of three layers: a polylactic acid-curcumin (PCPLLA) hydrophobic layer, a hydrolyzed polyacrylonitrile (HPAN) transfer layer, and a polyacrylonitrile-purple kale anthocyanin (PAN-PCA) hydrophilic layer.

View Article and Find Full Text PDF

Starch and plant fibers are abundant natural polymers that offer biodegradability, making them potential substitutes for plastics in certain applications, but are usually limited by its high hydrophilicity, and low mechanical performance. To address this issue, polylactic acid (PLA) is blended with cellulose and chitosan to create a waterproof film that can be applied to starch-fiber foaming biodegradable composites to enhance their water resistance properties. Here, plant fibers as a reinforcement is incorporated to the modified starch by foaming mold at 260 °C, and PLA based hydrophobic film is coated onto the surface to prepare the novel hydrophobic bio-composites.

View Article and Find Full Text PDF

Background: Bortezomib (BTZ) is a powerful proteasome inhibitor that has been approved for the treatment of haematologic malignancies. Its effectiveness has been assessed against different types of solid tumours. BTZ is ineffective in most solid tumours because of drug resistance, including cholangiocarcinoma, which is associated with a proteasome bounce-back effect.

View Article and Find Full Text PDF

The fabrication of antifouling zwitterionic polymer brushes represents a leading approach to mitigate nonspecific adhesion on the surfaces of medical devices. This investigation seeks to elucidate the correlation between the material composition and structural attributes of these polymer brushes in preventing protein adhesion. To achieve this goal, we modeled three different zwitterionic brushes, namely, carboxybetaine methacrylate (CBMA), sulfobetaine methacrylate (SBMA), and (2-(methacryloyloxy)ethyl)-phosphorylcholine (MPC).

View Article and Find Full Text PDF

Current treatments for hepatocellular carcinoma (HCC) are less effective and prone to recurrence after surgery, so it's needed to seek new ideas for its therapy. Tumour immune microenvironment (TME) is crucial for the pathogenesis, development and metastasis of HCC. Interactions between immune cells and tumour cells significantly impact responses to immunotherapies and patient prognosis.

View Article and Find Full Text PDF

High-performance catheters are essential for interventional surgeries, requiring reliable anti-adhesive and lubricated surfaces. This article develops a strategy for constructing high-density sulfobetaine zwitterionic polymer brushes on the surface of catheters, utilizing dopamine and sodium alginate as the primary intermediate layers, where dopamine provides mussel-protein-like adhesion to anchor the polymer brushes to the catheter surface. Hydroxyl-rich sodium alginate increases the number of grafting sites and improves the grafting mass by more than 4 times.

View Article and Find Full Text PDF

Short nanopores find extensive applications, capitalizing on their high throughput and detection resolution. Ionic behaviors through long nanopores are mainly determined by charged inner-pore walls. When pore lengths decrease to sub-200 nm, charged exterior surfaces provide considerable modulation to ion current.

View Article and Find Full Text PDF

Heterotrophic ammonia assimilation (HAA) process had been widely used in the treatment of high salt wastewater, but the electro enhanced coupling process and electron transfer process were rarely studied. In this study, a HAA process coupled microbial fuel cell (MFC) system was established to treat ammonia-containing wastewater under increasing salinity to achieve nitrogen recovery and electricity generation. Up to 95.

View Article and Find Full Text PDF

The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult.

View Article and Find Full Text PDF

Unlike thermoplastic petroleum-based materials, starch-based materials rely on aqueous systems but are incapable of hot melting, resulting in low processing efficiency and limited large-scale industrial applications. In this study, the combination of α-amylase liquefaction and urea plasticization was used for the first time to obtain enzymatic thermoplastic starch (ETPS) for hot melting by changing the molecular chain of starch. ETPS showed an apparent hot melting phenomenon when heated below 200 °C.

View Article and Find Full Text PDF

Nitrogen dioxide (NO) poses a critical potential risk to environmental quality and public health. A reliable machine learning (ML) forecasting framework will be useful to provide valuable information to support government decision-making. Based on the data from 1609 air quality monitors across China from 2014-2020, this study designed an ensemble ML model by integrating multiple types of spatial-temporal variables and three sub-models for time-sensitive prediction over a wide range.

View Article and Find Full Text PDF

Short nanopores have various applications in biosensing, desalination, and energy conversion. Here, the modulation of ionic transport by charged exterior surfaces is investigated through simulations with sub-200 nm long nanopores under applied voltages. Detailed analysis of the ionic current, electric field strength, and fluid flow inside and outside nanopores reveals that charged exterior surfaces can increase ionic conductance by increasing both the concentration and migration speed of charge carriers.

View Article and Find Full Text PDF

Thrombosis of extracorporeal circuits causes significant morbidity and mortality worldwide. In this study, plasma treatment technology and chemical grafting method were used to construct heparinized surfaces on the PVC substrate, which could not only reduce thrombosis but also decrease the side effects of the direct injection of anticoagulants. The PVC substrate was modified by plasma treatment technology firstly to obtain the active surface with the hydroxyl groups used for grafting.

View Article and Find Full Text PDF

Fluorescence images enhancement is important as it can provide more information for medical diagnosis. In this work, we design three simple yet useful filters based on the combinations of mathematical functions, which are proved to be effective in strengthening the images acquired from the fluorescence microscope. Using these filters, detailed objects can be found in the dark sections of the fluorescence images.

View Article and Find Full Text PDF