Electrocatalytic hydrodeoxygenation (EHDO) is a promising approach for upgrading biomass-derived bio-oils to sustainable fuels without the use of high-pressure hydrogen gas and elevated temperatures. However, direct EHDO for realistic hydrophobic lignin-based oil production remains challenging. Herein, we discuss the molecular dynamics that govern the EHDO of lignin bio-oil over Pt/C in an acidic electrolyte added with 2-propanol or a surfactant.
View Article and Find Full Text PDFThis study focused on evaluating the effectiveness of stabilizer/binding agents in immobilizing arsenic (As) in contaminated soil using both geochemical and geophysical monitoring methods. The effluent from the stabilizer/binding agent's application and control columns was analyzed, and the status of the columns was monitored using electrical resistivity (ER) and induced polarization (IP) methods. As stabilizers/binder, acid mine drainage sludge (AMDS) and steel slag (SS) were used, which delayed As and Ca leaching time and significantly reduced As leaching amount.
View Article and Find Full Text PDFComputational calculations and experimental studies reveal that the CoOOH phase and the intermediate-spin (IS) state are the key factors for realizing efficient Co-based electrocatalysts for the oxygen evolution reaction (OER). However, according to thermodynamics, general cobalt oxide converts to the CoO phase under OER condition, retarding the OER kinetics. Herein, we demonstrate a simple and scalable strategy to fabricate electrodes with maintaining Fe-CoOOH phase and an IS state under the OER.
View Article and Find Full Text PDFEvolving cost-effective transition metal phosphides (TMPs) using general approaches for energy storage is pivotal but challenging. Besides, the absence of noble metals and high electrocatalytic activity of TMPs allow their applicability as catalysts in oxygen evolution reaction (OER). Herein, CoNiP-CoP (CNP-CP) composite is in situ deposited on carbon fabric by a one-step hydrothermal technique.
View Article and Find Full Text PDFBackground: Growth factors (GFs) are signaling proteins that affect cellular processes such as growth, proliferation, and differentiation. GFs are used as cosmeceuticals, exerting anti-wrinkle, anti-aging, and whitening effects, and also as pharmaceuticals to treat wounds, growth failure, and oral mucositis. However, in mammalian and bacterial cells, low productivity and expression in inclusion bodies, respectively, of GFs does not satisfy the consumer demand.
View Article and Find Full Text PDFAims: To genetically engineer the oleaginous yeast Yarrowia lipolytica for de novo production of tetraacetylphytosphingosine (TAPS), a precursor of phytosphingosine, and optimization of fermentation conditions for high yield.
Methods And Results: We successfully constructed a TAPS-producing Y. lipolytica CE3 strain by co-expression of Wickerhamomyces ciferrii-derived acetyl transferases, Sli1p and Atf2p.