Publications by authors named "Man F Yan"

We report on the excitation and polarization preserved propagation of a very large effective-area (A ∼ 2240 μm) higher-order-mode in an optical fiber. A laser signal operating in the 1 μm wavelength region is transported in a Bessel-like LP mode over a 10 m long section of the polarization-maintaining higher-order-mode fiber. We observe that the light propagates through the fiber with >10 dB polarization-extinction-ratio as the fiber is coiled into circular loops of 40 cm diameter.

View Article and Find Full Text PDF

Higher-order-mode (HOM) fibers guiding light in large-effective-area (A) Bessel-like modes have recently generated great interest for high-power laser applications. A polarization-maintaining (PM) version of HOM fibers can afford the added possibility of coherent beam combination, improved material processing, and polarization multiplexing of high-power fiber lasers. We report a PM-HOM fiber for guiding Bessel-like modes with A ranging from 1200-2800  μm.

View Article and Find Full Text PDF

We demonstrate a seven-core erbium-doped fiber amplifier in which all the cores were pumped simultaneously by a side-coupled tapered multimode fiber. The amplifier has multicore (MC) MC inputs and MC outputs, which can be readily spliced to MC transmission fiber for amplifying space division multiplexed signals. Gain over 25 dB was obtained in each of the cores over a 40-nm bandwidth covering the C-band.

View Article and Find Full Text PDF

We demonstrated high-power broadband Yb-free clad-pumped erbium-doped fiber amplifier (EDFA) using commercial available low-cost 976 nm multimode diodes. An output power +33 dBm with less than ±1 dB natural gain flatness over a gain bandwidth of 33 nm (1570.3-1603.

View Article and Find Full Text PDF

We demonstrate a new high efficiency architecture for cascaded Raman fiber lasers based on a single pass cascaded amplifier configuration. Conversion is seeded at all intermediate Stokes wavelengths using a multi-wavelength seed source. A lower power Raman laser based on the conventional cascaded Raman resonator architecture provides a convenient seed source providing all the necessary wavelengths simultaneously.

View Article and Find Full Text PDF

Random perturbations play an important role in the crosstalk of multicore fibers, and can be captured by statistical coupled-mode calculations. In this approach, phase matching contributes a multiplicative factor to the average crosstalk, depending on the perturbation statistics and any intentional heterogeneity of neighboring cores. The impact of perturbations is shown to be qualitatively different depending on whether they are gradually varying, or have short-length (centimeter-scale) variations.

View Article and Find Full Text PDF

A statistical theory for crosstalk in multicore fibers is derived from coupled-mode equations including bend-induced perturbations. Bends are shown to play a crucial role in crosstalk, explaining large disagreement between experiments and previous calculations. The average crosstalk of a fiber segment is related to the statistics of the bend radius and orientation, including spinning along the fiber length.

View Article and Find Full Text PDF

Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even in the presence of strong bend perturbations. This opens the door to exploiting nonlinear fiber optics to manipulate such beams.

View Article and Find Full Text PDF

We describe the design, construction, and application of what are believed to be the smallest fiber-optic probes used to date during imaging or diagnosis involving low-coherence interferometry (LCI). The probes use novel fiber-optic gradient-index (GRIN) lenses fabricated by a recently developed modified chemical-vapor-deposition (MCVD) process that avoids on-axis aberrations commonly marring MCVD-fabricated GRIN substrate. Fusing GRIN fiber lenses onto single-mode fiber yields automatically aligned all-fiber probes that insert into tissue through hypodermic needles as small as 31-gauge (inner diameter, 127 mum).

View Article and Find Full Text PDF

We demonstrate a method of generating short pulses at 1350 nm by exciting Cerenkov radiation in a higher-order-mode fiber with a 1064 nm femtosecond fiber laser. We measure a 106 fs, 0.66 nJ output pulse.

View Article and Find Full Text PDF

We demonstrate soliton self-frequency shift of more than 12% of the optical frequency in a higher-order mode solid, silica-based fiber below 1300nm. This new class of fiber shows great promise for supporting Raman-shifted solitons below 1300nm in intermediate energy regimes of 1 to 10nJ that cannot be reached by index-guided photonic crystal fibers or air-core photonic bandgap fibers. By changing the input pulse energy of 200fs pulses from 1.

View Article and Find Full Text PDF

A new type of fiber for distributed filtering is proposed, designed to have resonant coupling between core and cladding at desired wavelengths. Design principles are illustrated with simulations of several fibers. A filter fiber was fabricated following this design strategy.

View Article and Find Full Text PDF

A phase-locked frequency comb in the near infrared is demonstrated with a mode-locked, erbium-doped, fiber laser whose output is amplified and spectrally broadened in dispersion-flattened, highly nonlinear optical fiber to span from 1100 to >2200 nm. The supercontinuum output comprises a frequency comb with a spacing set by the laser repetition rate and an offset by the carrier-envelope offset frequency, which is detected with the standard f-to-2f heterodyne technique. The comb spacing and offset frequency are phase locked to a stable rf signal with a fiber stretcher in the laser cavity and by control of the pump laser power, respectively.

View Article and Find Full Text PDF

Dispersion properties of novel, tapered, air-silica microstructure fibers are measured between 1.3 and 1.65 microm by white-light interferometry.

View Article and Find Full Text PDF