Publications by authors named "Mamoun Alazab"

The abnormal growth of malignant or nonmalignant tissues in the brain causes long-term damage to the brain. Magnetic resonance imaging (MRI) is one of the most common methods of detecting brain tumors. To determine whether a patient has a brain tumor, MRI filters are physically examined by experts after they are received.

View Article and Find Full Text PDF

Ambient intelligence plays a crucial role in healthcare situations. It provides a certain way to deal with emergencies to provide the essential resources such as nearest hospitals and emergency stations promptly to avoid deaths. Since the outbreak of Covid-19, several artificial intelligence techniques have been used.

View Article and Find Full Text PDF

This paper proposes a multichannel deep learning approach for lung disease detection using chest X-rays. The multichannel models used in this work are EfficientNetB0, EfficientNetB1, and EfficientNetB2 pretrained models. The features from EfficientNet models are fused together.

View Article and Find Full Text PDF

Globally, millions of people were affected by the Corona-virus disease-2019 (COVID-19) causing loads of deaths. Most COVID-19 affected people recover in a few spans of weeks. However, certain people even those with a milder variant of the disease persist in experiencing symptoms subsequent to their initial recuperation.

View Article and Find Full Text PDF

Considering the coronavirus disease 2019 (COVID-19) pandemic, the government and health sectors are incapable of making fast and reliable decisions, particularly given the various effects of decisions on different contexts or countries across multiple sectors. Therefore, leaders often seek decision support approaches to assist them in such scenarios. The most common decision support approach used in this regard is multiattribute decision-making (MADM).

View Article and Find Full Text PDF

Introduction: The vaccine distribution for the COVID-19 is a multicriteria decision-making (MCDM) problem based on three issues, namely, identification of different distribution criteria, importance criteria and data variation. Thus, the Pythagorean fuzzy decision by opinion score method (PFDOSM) for prioritising vaccine recipients is the correct approach because it utilises the most powerful MCDM ranking method. However, PFDOSM weighs the criteria values of each alternative implicitly, which is limited to explicitly weighting each criterion.

View Article and Find Full Text PDF

Recent technological developments, such as the Internet of Things (IoT), artificial intelligence, edge, and cloud computing, have paved the way in transforming traditional healthcare systems into smart healthcare (SHC) systems. SHC escalates healthcare management with increased efficiency, convenience, and personalization, via use of wearable devices and connectivity, to access information with rapid responses. Wearable devices are equipped with multiple sensors to identify a person's movements.

View Article and Find Full Text PDF

Federated learning (FL) is a distributed model for deep learning that integrates client-server architecture, edge computing, and real-time intelligence. FL has the capability of revolutionizing machine learning (ML) but lacks in the practicality of implementation due to technological limitations, communication overhead, non-IID (independent and identically distributed) data, and privacy concerns. Training a ML model over heterogeneous non-IID data highly degrades the convergence rate and performance.

View Article and Find Full Text PDF

The Internet of Multimedia Things (IoMT) orchestration enables the integration of systems, software, cloud, and smart sensors into a single platform. The IoMT deals with scalar as well as multimedia data. In these networks, sensor-embedded devices and their data face numerous challenges when it comes to security.

View Article and Find Full Text PDF

The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants.

View Article and Find Full Text PDF

The blockchain-enabled internet of medical things (IoMT) is an emerging paradigm that could provide strong trust establishment and ensure the traceability of data sharing in the IoMT networks. One of the fundamental building blocks for Blockchain is Elliptic Curve Digital Signature Algorithm (ECDSA). Nevertheless, when processing a large number of transactions, the verification of multiple signatures will incur cumbersome overhead to the nodes in Blockchain.

View Article and Find Full Text PDF

Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM).

View Article and Find Full Text PDF

A novel coronavirus (COVID-19) has globally attracted attention as a severe respiratory condition. The epidemic has been first tracked in Wuhan, China, and has progressively been expanded in the entire world. The growing expansion of COVID-19 around the globe has made X-ray images crucial for accelerated diagnostics.

View Article and Find Full Text PDF

Industrial Internet of Things (IIoT) ensures reliable and efficient data exchanges among the industrial processes using Artificial Intelligence (AI) within the cyber-physical systems. In the IIoT ecosystem, devices of industrial applications communicate with each other with little human intervention. They need to act intelligently to safeguard the data confidentiality and devices' authenticity.

View Article and Find Full Text PDF

Industry 5.0 is the digitalization, automation and data exchange of industrial processes that involve artificial intelligence, Industrial Internet of Things (IIoT), and Industrial Cyber-Physical Systems (I-CPS). In healthcare, I-CPS enables the intelligent wearable devices to gather data from the real-world and transmit to the virtual world for decision-making.

View Article and Find Full Text PDF

Internet of Medical Things (IoMT) platform serves as an interoperable medium for healthcare applications by connecting wearable sensors, end-users, and clinical diagnosis centers. This interoperable medium provides solutions for disease diagnosis; predicting and monitoring end-user health using physiological vital signs sensed wearable sensor data. The communicating and data exchanging internet of things (IoT) platform imposes latency and overloading uncertainties in the heterogeneous environment.

View Article and Find Full Text PDF

Since December 2019, the coronavirus disease (COVID-19) outbreak has caused many death cases and affected all sectors of human life. With gradual progression of time, COVID-19 was declared by the world health organization (WHO) as an outbreak, which has imposed a heavy burden on almost all countries, especially ones with weaker health systems and ones with slow responses. In the field of healthcare, deep learning has been implemented in many applications, e.

View Article and Find Full Text PDF

The pursuit to spot abnormal behaviors in and out of a network system is what led to a system known as intrusion detection systems for soft computing besides many researchers have applied machine learning around this area. Obviously, a single classifier alone in the classifications seems impossible to control network intruders. This limitation is what led us to perform dimensionality reduction by means of correlation-based feature selection approach (CFS approach) in addition to a refined ensemble model.

View Article and Find Full Text PDF