Publications by authors named "Mamosheledi Mothibe"

Efavirenz, tenofovir, rifampicin, simvastatin, lamotrigine and clarithromycin are known potential mitochondrial toxicants. Mitochondrial toxicity has been reported to disrupt the chain of events in the insulin signalling pathway. Considering the upward trajectory of diabetes mellitus prevalence, studies which seek to uncover probable risk factors for developing diabetes should be encouraged.

View Article and Find Full Text PDF

In light of the expected increase in the prevalence of diabetes mellitus due to an aging population, sedentary lifestyles, an increase in obesity, and unhealthy diets, there is a need to identify potential pharmacological agents that can heighten the risk of developing diabetes. Similarly, it is equally important to also identify those agents that show blood glucose-lowering properties. Amongst these agents are tyrosine kinase inhibitors used to treat certain types of cancers.

View Article and Find Full Text PDF

Mitochondrial impairment has been associated with the development of insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM). However, the relationship between mitochondrial impairment and insulin resistance is not fully elucidated due to insufficient evidence to support the hypothesis. Insulin resistance and insulin deficiency are both characterised by excessive production of reactive oxygen species and mitochondrial coupling.

View Article and Find Full Text PDF

Nalidixic acid is a synthetic antibiotic discovered in the 1960s during the synthesis of chloroquine, an effective drug for treating malaria. Nalidixic acid became the backbone for developing quinolones that are now widely used clinically for the treatment of various bacterial infections. The mechanism of action of quinolone involves the inhibition of topoisomerase II and topoisomerase IV.

View Article and Find Full Text PDF