Dysregulation of brain-derived neurotrophic factor (BDNF) has been implicated in Alzheimer's disease (AD). In this study, we investigated the temporal dynamics of BDNF expression in the hippocampus of 5xFAD mice, an AD model, focusing on sex and age differences and Bdnf mRNA splice variants. At 3 months of age, female wild-type (WT) mice exhibited significantly higher Bdnf mRNA levels compared to males.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) is essential for numerous neuronal functions, including learning and memory. The expression of BDNF is regulated by distinctive transcriptional and post-transcriptional mechanisms. The Bdnf gene in mice and rats comprises eight untranslated exons (exons I-VIII) and one exon (exon IX) that contains the pre-proBDNF coding sequence.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is deeply involved in the development and higher function of the nervous system, including learning and memory. By contrast, a reduction in BDNF levels is associated with various neurological disorders such as dementia and depression. Therefore, the inducers of Bdnf expression might be valuable in ameliorating or protecting against a decline in brain functions.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) is expressed in the white adipose tissues (WATs), and the expression increases during high-fat diet (HFD) feeding, implicating its role in obesity. Here, we focused on BDNF expression in epididymal WAT (eWAT), a visceral adipose tissue, in mice. During 2 weeks of HFD feeding, Bdnf mRNA expression in eWAT slightly increased, but a robust increase was observed after 8 weeks of HFD feeding.
View Article and Find Full Text PDFExercise increases the expression of brain-derived neurotrophic factor (BDNF) in the brain and contributes to cognitive and sensorimotor functions. This study aimed to elucidate how repeated exercise modifies BDNF expression elicited by a single bout of exercise in the brain using in vivo bioluminescence imaging (BLI). Bdnf-luciferase (Luc) mice with the firefly luciferase gene inserted at the translation start point of the Bdnf gene were used for BLI to monitor changes in BDNF expression in the brain.
View Article and Find Full Text PDFEnvironmental and genetic factors influence synapse formation. Numerous animal experiments have revealed that pesticides, including herbicides, can disturb normal intracellular signals, gene expression, and individual animal behaviors. However, the mechanism underlying the adverse outcomes of pesticide exposure remains elusive.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2023
The expression of brain-derived neurotrophic factor (BDNF) is observed not only in the brain, but also in peripheral tissues including white adipose tissues (WATs). Here, we showed that the mRNA expression of Bdnf in inguinal WAT (iWAT) and epididymal WAT (eWAT) increased within 2 weeks of feeding mice with a high-fat diet (HFD). In mice on a 2-week HFD, the induction of Bdnf expression in WATs was significantly correlated with increases in body weight, suggesting that Bdnf expression may increase at an early stage of obesity.
View Article and Find Full Text PDFReductions in brain-derived neurotrophic factor (BDNF) expression levels have been reported in the brains of patients with neurological disorders such as Alzheimer's disease. Therefore, upregulating BDNF and preventing its decline in the diseased brain could help ameliorate neurological dysfunctions. Accordingly, we sought to discover agents that increase Bdnf expression in neurons.
View Article and Find Full Text PDFSerum response factor (SRF) is a transcription factor that plays essential roles in multiple brain functions in concert with SRF cofactors such as ternary complex factor (TCF) and megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF), which comprises MKL1/MRTFA and MKL2/MRTFB. Here, we stimulated primary cultured rat cortical neurons with brain-derived neurotrophic factor (BDNF) and investigated the levels of SRF and SRF cofactor mRNA expression. We found that SRF mRNA was transiently induced by BDNF, whereas the levels of SRF cofactors were differentially regulated: mRNA expression of Elk1, a TCF family member, and MKL1/MRTFA were unchanged, while in contrast, mRNA expression of MKL2/MRTFB was transiently decreased.
View Article and Find Full Text PDFPhysical exercise increases brain-derived neurotrophic factor (BDNF) expression in the brain. However, the absence of non-invasive and repetitive monitoring of BDNF expression in the brains of living animals has limited the understanding of how BDNF expression changes after exercise. This study aimed to elucidate the temporal dynamics of BDNF expression in the brain after a single bout of exercise, using in vivo bioluminescence imaging.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) plays a crucial role in numerous brain functions, including memory consolidation. Previously, we generated a Bdnf-Luciferase transgenic (Bdnf-Luc) mouse strain to visualize changes in Bdnf expression using in vivo bioluminescence imaging. We successfully visualized activity-dependent Bdnf induction in living mouse brains using a d-luciferin analog, TokeOni, which distributes to the brain and produces near-infrared bioluminescence.
View Article and Find Full Text PDFAmeliorating reduced brain-derived neurotrophic factor (BDNF) expression or maintaining high BDNF levels in the brain has been suggested to improve brain function in neurological diseases and prevent aging-related brain dysfunction. In this study, we found that a food-derived product, Aminothioneine® (AT), which is prepared from the extract of golden oyster mushrooms ( var. ), increased mRNA expression levels in primary rat cortical neuron cultures.
View Article and Find Full Text PDFLearning and environmental adaptation increase the likelihood of survival and improve the quality of life. However, it is often difficult to judge optimal behaviors in real life due to highly complex social dynamics and environment. Consequentially, many different brain regions and neuronal circuits are involved in decision-making.
View Article and Find Full Text PDFAltered levels of brain-derived neurotrophic factor (BDNF) have been reported in neurologically diseased human brains. Therefore, it is important to understand how the expression of BDNF is controlled under pathophysiological as well as physiological conditions. Here, we report a method to visualize changes in BDNF expression in the living mouse brain using bioluminescence imaging (BLI).
View Article and Find Full Text PDFSuppressor of cancer cell invasion (SCAI) is a suppressor of myocardin-related transcription factor (MRTF)-mediated transcription and cancer cell invasion. However, roles of SCAI in the brain and neuronal cells are not fully resolved. In this study, we initially investigated the distribution of Scai mRNA in the developing rat brain and in neurons.
View Article and Find Full Text PDFPhosphatase and actin regulator 3/nuclear scaffold-associated protein phosphatase 1-inhibiting protein (Phactr3/Scapinin) is an actin- and protein phosphatase 1 (PP1)-binding protein known to negatively regulate axon elongation. In this study, we examined the expression pattern of Phactr3/Scapinin in several tissues and investigated the effect of Phactr3/Scapinin on dendritic morphology of cortical neurons. Results showed that Phactr3/Scapinin expression was up-regulated in the developing brain and enriched in neurons and in the postsynaptic density fraction, but not in astrocytes.
View Article and Find Full Text PDFLow levels of brain-derived neurotrophic factor (BDNF), a key regulator of synaptic plasticity, are associated with neurological diseases, including depression and Alzheimer's disease. Therefore, BDNF is a drug target for these diseases. Here we screened for inducers of neuronal Bdnf expression from a pharmacologically validated compound library using our recently developed screening assay based on luciferase activity in cultured cortical neurons.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) is a key player in synaptic plasticity, and consequently, learning and memory. Because of its fundamental role in numerous neurological functions in the central nervous system, BDNF has utility as a biomarker and drug target for neurodegenerative and neuropsychiatric disorders. Here, we generated a screening assay to mine inducers of Bdnf transcription in neuronal cells, using primary cultures of cortical cells prepared from a transgenic mouse strain, specifically, Bdnf-Luciferase transgenic (Bdnf-Luc) mice.
View Article and Find Full Text PDFTremendous advances have been made recently in the identification of genes and signaling pathways associated with the risks for psychiatric disorders such as schizophrenia and bipolar disorder. However, there has been a marked reduction in the pipeline for the development of new psychiatric drugs worldwide, mainly due to the complex causes that underlie these disorders. G-protein coupled receptors (GPCRs) are the most common targets of antipsychotics such as quetiapine and aripiprazole, and play pivotal roles in controlling brain function by regulating multiple downstream signaling pathways.
View Article and Find Full Text PDFThe expression of immediate early genes (IEGs) is thought to be an essential molecular basis of neuronal plasticity for higher brain function. Many IEGs contain serum response element in their transcriptional regulatory regions and their expression is controlled by serum response factor (SRF). SRF is known to play a role in concert with transcriptional cofactors.
View Article and Find Full Text PDFThe megakaryoblastic leukaemia (MKL) family are serum response factor (SRF) coactivators, which are highly expressed in the brain. Accordingly, MKL plays important roles in dendritic morphology, neuronal migration, and brain development. Further, nucleotide substitutions in the MKL1 and MKL2 genes are found in patients with schizophrenia and autism spectrum disorder, respectively.
View Article and Find Full Text PDFDeltamethrin (DM), a type II pyrethroid, robustly increases brain-derived neurotrophic factor (Bdnf) expression and has a neurotrophic effect in primary cultures of rat cortical neurons. In this study, we investigated the effect of DM on neurite morphology in cultured rat cortical neurons. DM significantly increased neurite outgrowth, but this increase was abolished when the BDNF scavenger tropomyosin receptor kinase B (TrkB)-Fc was added 10 min before the DM treatment.
View Article and Find Full Text PDFYakugaku Zasshi
November 2017
The regulation of the development and function of the nervous system is not preprogramed but responds to environmental stimuli to change neural development and function flexibly. This neural plasticity is a characteristic property of the nervous system. For example, strong synaptic activation evoked by environmental stimuli leads to changes in synaptic functions (known as synaptic plasticity).
View Article and Find Full Text PDF