Publications by authors named "Mamoru Endo"

Multi-photon Fock states have diverse applications such as optical quantum information processing. For the implementation of quantum information processing, Fock states should be generated within the telecommunication wavelength band, particularly in the C-band (1530-1565 nm). This is because mature optical communication technologies can be leveraged for transmission, manipulation, and detection.

View Article and Find Full Text PDF

Quantum information processors benefit from high clock frequencies to fully harness quantum advantages before they are lost to decoherence. All-optical systems offer unique benefits due to their inherent 100-THz carrier frequency, enabling the development of THz-clock frequency processors. However, the bandwidth of quantum light sources and measurement devices has been limited to the MHz range, with nonclassical state generation rates in the kHz range.

View Article and Find Full Text PDF
Article Synopsis
  • Cloud optical quantum computing benefits from a fiber-based system, which avoids the need for spatial alignment but faces challenges like phase drifts and polarization fluctuations due to environmental conditions.* -
  • The study presents a successful measurement of squeezed light using a fiber system over 24 hours, utilizing stabilization techniques to reduce instabilities and an integrated controller for automatic alignment.* -
  • The results show consistent squeezing levels of -4.42 dB with minimal variation, indicating that this technology could enable the development of complex optical setups for long-term operation in quantum computing cloud services.*
View Article and Find Full Text PDF

Optical phase-insensitive heterodyne (beat-note) detection, which measures the relative phase of two beams at different frequencies through their interference, is a key sensing technology for various spatial/temporal measurements, such as frequency measurements in optical frequency combs. However, its sensitivity is limited not only by shot noise from the signal frequency band but also by the extra shot noise from an image band, known as the 3-dB noise penalty. Here, we propose a method to remove shot noise from all these bands using squeezed light.

View Article and Find Full Text PDF
Article Synopsis
  • Quantum computers need to protect information from errors, which can be done by encoding it into a logical state suitable for quantum error correction.
  • The Gottesman-Kitaev-Preskill (GKP) qubit is a strong candidate for this purpose due to its multiqubit operations that work well at optical frequencies.
  • This research successfully demonstrated a GKP state using propagating light at telecommunication wavelengths, showing promising results in nonclassicality and non-Gaussianity, which are essential for future quantum computing developments.
View Article and Find Full Text PDF

Uncertainty principle prohibits the precise measurement of both components of displacement parameters in phase space. We have theoretically shown that this limit can be beaten using single-photon states, in a single-shot and single-mode setting [F. Hanamura et al.

View Article and Find Full Text PDF
Article Synopsis
  • Optical quantum information processing needs efficient interference of quantum light, but using optical fibers can reduce this interference due to polarization issues.
  • * The proposed method optimizes interference visibility by controlling polarizations along two circular paths on the Poincaré sphere, using fiber stretchers as polarization controllers.
  • * Experimental results show this method maintains over 99.9% visibility for three hours with only 0.02 dB (0.5%) optical loss, enhancing the feasibility of fiber systems for practical optical quantum computers.*
View Article and Find Full Text PDF
Article Synopsis
  • Non-Gaussian states with negative Wigner functions are essential for creating fault-tolerant quantum computers, but previous experiments lacked the use of ultrashort optical wave packets.
  • This paper reports the successful generation of non-Gaussian states from 8-ps wave packets in the 1545.32 nm telecommunications wavelength, utilizing photon subtraction techniques.
  • The research employs advanced technology such as a low-loss waveguide optical parametric amplifier and a pulsed homodyne measurement system, paving the way for more complex non-Gaussian states and improved high-speed quantum computation.
View Article and Find Full Text PDF

Controlling the temporal waveform of light is the key to a versatile light source in classical and quantum electronics. Although pulse shaping of classical light is mature and has been used in various fields, more advanced applications would be realized by a light source that generates arbitrary quantum light with arbitrary temporal waveforms. We call such a device a quantum arbitrary waveform generator (Q-AWG).

View Article and Find Full Text PDF

Telecommunication wavelength with well-developed optical communication technologies and low losses in the waveguide are advantageous for quantum applications. However, an experimental generation of non-classical states called non-Gaussian states at the telecommunication wavelength is still underdeveloped. Here, we generate highly-pure-single-photon states, one of the most primitive non-Gaussian states, by using a heralding scheme with an optical parametric oscillator and a superconducting nano-strip photon detector.

View Article and Find Full Text PDF
Article Synopsis
  • - Non-Gaussian states are crucial for advancing optical quantum technologies, and the Optical Quantum State Synthesizer (OQSS) is a promising method for their preparation using Gaussian inputs and linear optics.
  • - A major challenge is the complexity of simulating the state preparation on classical computers, making it tough to generate essential non-Gaussian states for quantum processing.
  • - The authors propose a backcasting approach to simplify the OQSS design, simulating it layer by layer from the final output back to the beginning, which can also limit the photon detection requirements to a maximum of 2 photons.
View Article and Find Full Text PDF

Continuous-wave (CW) squeezed light is used in the generation of various optical quantum states, and thus is a fundamental resource of fault-tolerant universal quantum computation using optical continuous variables. To realize a practical quantum computer, a waveguide optical parametric amplifier (OPA) is an attractive CW squeezed light source in terms of its THz-order bandwidth and suitability for modularization. The usages of a waveguide OPA in quantum applications thus far, however, are limited due to the difficulty of the generation of the squeezed light with a high purity.

View Article and Find Full Text PDF

Free-running mode-locked monolithic optical frequency combs offer a compact and simple alternative to complicated optical frequency division schemes. Ultra-low free-running noise performance of these oscillators removes the necessity of external phase stabilization, making the microwave systems uncomplicated and compact with lower power consumption while liberating the sidebands of the carrier from servo bumps typically present around hundreds of kilohertz offsets. Here we present a free-running monolithic laser-based 8 GHz photonic microwaves generation and characterization with a cryogenically cooled power splitter to demonstrate a state-of-the-art phase noise floor of less than -180 dBc/Hz below 1 MHz offset from the carrier.

View Article and Find Full Text PDF

Superconducting nanostrip photon detectors have been used as single-photon detectors, which can discriminate only photons' presence or absence. It has recently been found that they can discriminate the number of photons by analyzing the output signal waveform, and they are expected to be used in various fields, especially in optical-quantum-information processing. Here, we improve the photon-number-resolving performance for light with a high-average photon number by pattern matching of the output signal waveform.

View Article and Find Full Text PDF
Article Synopsis
  • Optical quantum computation needs carefully created multimode photonic quantum states to function effectively.
  • The study shows the successful phase locking of two all-optical quantum memories, which allows for the precise timing of releasing two-mode entangled single-photon states.
  • The released states maintain their entanglement and nonclassical properties even with release-time differences of up to 400 nanoseconds, validated through advanced measurement techniques.
View Article and Find Full Text PDF

Phase noise performance of photonic microwave systems, such as optical frequency division (OFD), can surpass state-of-the-art electronic oscillators by several orders of magnitude. However, high-finesse cavities and active stabilization requirements in OFD systems make them complicated and potentially unfit for field deployment. Ultra-low noise mode-locked monolithic lasers offer a viable alternative for a compact and simple photonic microwave system.

View Article and Find Full Text PDF

We demonstrate a novel system that uses a piezoelectric transducer (PZT)-actuated mirror for laser stabilization. A combination of a simple mechanical design and electronic circuits is used to realize an ultra-flat frequency response, which enables an effective feedback bandwidth of 500 kHz. The PZT also performed well when used in a mode-locked laser with a GHz repetition rate, to which it is difficult to apply an electro-optic modulator (EOM).

View Article and Find Full Text PDF

We demonstrate the use of two dual-output Mach-Zehnder modulators (DO-MZMs) in a direct comparison between a femtosecond (fs) pulse train and a microwave signal. Through balanced detection, the amplitude-to-phase modulation (AM-PM) conversion effect is suppressed by more than 40 dB. A cross-spectrum technique enables us to achieve a high-sensitivity phase noise measurement (-186 dBc/Hz above 10-kHz offset), which corresponds to the thermal noise of a +9 dBm carrier.

View Article and Find Full Text PDF

A 15-GHz mode spacing optical frequency comb based on a Kerr-lens mode-locked Yb:YO ceramic laser has been developed. Individual modes were clearly resolved by a commercial spectrometer. To demonstrate the long-term operation of the optical frequency comb, a single longitudinal mode was phase-locked to a frequency-stabilized continuous wave laser and the repetition rate to a radio frequency standard.

View Article and Find Full Text PDF

We implement the squeezing operation as a genuine quantum gate, deterministically and reversibly acting "online" upon an input state no longer restricted to the set of Gaussian states. More specifically, by applying an efficient and robust squeezing operation for the first time to non-Gaussian states, we demonstrate a two-way conversion between a particlelike single-photon state and a wavelike superposition of coherent states. Our squeezing gate is reliable enough to preserve the negativities of the corresponding Wigner functions.

View Article and Find Full Text PDF

A laser diode (LD)-pumped, 6-GHz repetition rate, ytterbium (Yb)-doped Lu2O3 ceramic Kerr-lens mode-locked laser is described. A bow-tie ring cavity enabled the generation of femtosecond pulses centered at a wavelength of 1076 nm with an average power of 10 mW. The pulse duration after an amplifier was 161 fs whereas the transform-limited pulse duration directly from the oscillator was 148 fs.

View Article and Find Full Text PDF

We developed a laser-diode pumped, 4.6-GHz repetition-rate, Yb:KYW Kerr-lens mode-locked femtosecond oscillator. A bow-tie ring cavity generates an output power of 14.

View Article and Find Full Text PDF