Rice production is seriously affected by saline-alkaline stress worldwide. To elucidate the saline-alkaline tolerance mechanisms in a novel tolerant rice variety, Shwe Nang Gyi (SNG), we investigated ion accumulation in SNG and Koshihikari (KSH), which is a saline-alkaline sensitive rice variety, and the candidates for saline-alkaline inducible genes in SNG using RNA-seq. SNG had superior ion accumulation capacity, such as K and Zn, compared to KSH.
View Article and Find Full Text PDFThis study was conducted to determine the responses to saline-alkaline (SA) stress with regard to nutrient accumulation in two rice varieties having different tolerances to salt-stress. A salinity-tolerant landrace, Pokkali, and a salinity-sensitive variety, PTT1, were exposed to three levels of SA conditions, pH 7.0 (mild), pH 8.
View Article and Find Full Text PDFThis article describes the growth of 18 acclimatized and 11 non-acclimatized rice varieties grown in a hydroponic nutrient solution in a glasshouse. Four plants from each variety were grown under control conditions, salinity stress following control conditions (salinity), and salinity stress following acclimation (salinity/acclimation) conditions. Sampling was performed at the end of the salinity treatment (36 days of growth).
View Article and Find Full Text PDFTo elucidate the mechanisms of salt acclimation, physiological parameters of 70 rice varieties were compared under control and salt stress conditions after the acclimation treatment. The results indicated that some rice varieties had the ability to acclimatize to salt stress, exhibiting improved growth following the acclimation treatment under subsequent salinity stress compared to those without acclimation treatment. Conversely, some varieties exhibited reduced growth both with and without acclimation treatment under subsequent salinity stress.
View Article and Find Full Text PDFThis study was designed to elucidate the physiological responses of two rice genotypes to different pH levels under high saline stress. A salt-tolerant cultivar, FL478, and a salt-sensitive cultivar, IR29, were exposed to saline-alkaline solutions supplemented with 50 mM Na at pH 9 (severe), pH 8 (moderate), and pH 7 (mild) for three weeks. The results indicated that FL478 is relatively saline-alkaline tolerant compared to IR29, and this was evident from its higher dry mass production, lower Na concentration in the leaf blades, and maintenance of water balance under both mild and moderate saline-alkaline stress conditions.
View Article and Find Full Text PDF