Publications by authors named "Mami Kishima"

Hepatocytes are a major parenchymal cell type in the liver and play an essential role in liver function. Hepatocyte-like cells can be differentiated in vitro from induced pluripotent stem cells (iPSCs) via definitive endoderm (DE)-like cells and hepatoblast-like cells. Here, we explored the in vitro differentiation time-course of hepatocyte-like cells.

View Article and Find Full Text PDF

Hepatocytes are the dominant cell type in the human liver, with functions in metabolism, detoxification, and producing secreted proteins. Although gene regulation and master transcription factors involved in the hepatocyte differentiation have been extensively investigated, little is known about how the epigenome is regulated, particularly the dynamics of DNA methylation and the critical upstream factors. Here, by examining changes in the transcriptome and the methylome using an in vitro hepatocyte differentiation model, we show putative DNA methylation-regulating transcription factors, which are likely involved in DNA demethylation and maintenance of hypo-methylation in a differentiation stage-specific manner.

View Article and Find Full Text PDF

DNA methylation of CpG dinucleotides is an important epigenetic modification involved in the regulation of mammalian gene expression, with each type of cell developing a specific methylation profile during its differentiation. Recently, it has been shown that a small subgroup of transcription factors (TFs) might promote DNA demethylation at their binding sites. We developed a bioinformatics pipeline to predict from genome-wide DNA methylation data TFs that promote DNA demethylation at their binding site.

View Article and Find Full Text PDF

Oocytes mature in a specialized fluid-filled sac, the ovarian follicle, which provides signals needed for meiosis and germ cell growth. Methods have been developed to generate functional oocytes from pluripotent stem cell-derived primordial germ cell-like cells (PGCLCs) when placed in culture with embryonic ovarian somatic cells. In this study, we developed culture conditions to recreate the stepwise differentiation process from pluripotent cells to fetal ovarian somatic cell-like cells (FOSLCs).

View Article and Find Full Text PDF

Cellular reprogramming is driven by a defined set of transcription factors; however, the regulatory logic that underlies cell-type specification and diversification remains elusive. Single-cell RNA-seq provides unprecedented coverage to measure dynamic molecular changes at the single-cell resolution. Here, we multiplex and ectopically express 20 pro-neuronal transcription factors in human dermal fibroblasts and demonstrate a widespread diversification of neurons based on cell morphology and canonical neuronal marker expressions.

View Article and Find Full Text PDF

Mesenchymal-to-epithelial transition (MET) is an important step in cell reprogramming from fibroblasts (a cell type frequently used for this purpose) to various epithelial cell types. However, the mechanism underlying MET induction in fibroblasts remains to be understood. The present study aimed to identify the transcription factors (TFs) that efficiently induce MET in dermal fibroblasts.

View Article and Find Full Text PDF

RUNX1 is an essential master transcription factor in hematopoietic development and plays important roles in immune functions. Although the gene regulatory mechanism of RUNX1 has been characterized extensively, the epigenetic role of RUNX1 remains unclear. Here, we demonstrate that RUNX1 contributes DNA demethylation in a binding site-directed manner in human hematopoietic cells.

View Article and Find Full Text PDF

Background: DNA methylation is a fundamental epigenetic modification that is involved in many biological systems such as differentiation and disease. We and others recently showed that some transcription factors (TFs) are involved in the site-specific determination of DNA demethylation in a binding site-directed manner, although the reports of such TFs are limited.

Results: Here, we develop a screening system to identify TFs that induce binding site-directed DNA methylation changes.

View Article and Find Full Text PDF

Background: SPI1 is an essential transcription factor (TF) for the hematopoietic lineage, in which its expression is tightly controlled through a -17-kb upstream regulatory region and a promoter region. Both regulatory regions are demethylated during hematopoietic development, although how the change of DNA methylation status is performed is still unknown.

Results: We found that the ectopic overexpression of RUNX1 (another key TF in hematopoiesis) in HEK-293T cells induces almost complete DNA demethylation at the -17-kb upstream regulatory region and partial but significant DNA demethylation at the proximal promoter region.

View Article and Find Full Text PDF

Transcriptional regulatory network (TRN) reconstitution and deconstruction occur simultaneously during reprogramming; however, it remains unclear how the starting and targeting TRNs regulate the induction and suppression of peripheral genes. Here we analyzed the regulation using direct cell reprogramming from human dermal fibroblasts to monocytes as the platform. We simultaneously deconstructed fibroblastic TRN and reconstituted monocytic TRN; monocytic and fibroblastic gene expression were analyzed in comparison with that of fibroblastic TRN deconstruction only or monocytic TRN reconstitution only.

View Article and Find Full Text PDF

Combinatorial interactions of transcription modulators are critical to regulate cell-specific expression and to drive direct cell reprogramming (e.g. trans-differentiation).

View Article and Find Full Text PDF

Background: Pandemic influenza A(H1N1) virus infection quickly circulated worldwide in 2009. In Japan, the first case was reported in May 2009, one month after its outbreak in Mexico. Thereafter, A(H1N1) infection spread widely throughout the country.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short (20-23 nt) RNAs that are sequence-specific mediators of transcriptional and post-transcriptional regulation of gene expression. Modern high-throughput technologies enable deep sequencing of such RNA species on an unprecedented scale. We find that the analysis of small RNA deep-sequencing libraries can be affected by cross-mapping, in which RNA sequences originating from one locus are inadvertently mapped to another.

View Article and Find Full Text PDF

We reported previously that high hydrostatic pressure-injured stationary phase cells of Escherichia coli K-12 lost their intrinsic deoxycholate tolerance. The AcrAB-TolC multi-drug resistance pump driven by proton motive force has been argued to be responsible for the tolerance to deoxycholate. In this report, we tested the sensitivity of the AcrAB-TolC (three components) pump to high hydrostatic pressure treatment (HPT).

View Article and Find Full Text PDF