In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta-agonists and atrial natriuretic peptide, and release of adiponectin and leptin.
View Article and Find Full Text PDFBrown adipose tissue uncoupling protein-1 (UCP1) plays a major role in the control of energy balance in rodents. It has long been thought, however, that there is no physiologically relevant UCP1 expression in adult humans. In this study we show, using an original approach consisting of sorting cells from various tissues and differentiating them in an adipogenic medium, that a stationary population of skeletal muscle cells expressing the CD34 surface protein can differentiate in vitro into genuine brown adipocytes with a high level of UCP1 expression and uncoupled respiration.
View Article and Find Full Text PDFThe status of adipose tissue changes rapidly. From a simple filler tissue, it successively acquires the status of metabolic active tissue, endocrine tissue, plastic tissue, and finally that of a large reservoir of cells suitable for cell therapy and regenerative medicine. All throughout this story, our knowledge has been largely dependent on genetic tools and gene transfer.
View Article and Find Full Text PDFDue to the importance of fat tissues in both energy balance and in the associated disorders arising when such balance is not maintained, adipocyte differentiation has been extensively investigated in order to control and inhibit the enlargement of white adipose tissue. The ability of a cell to undergo adipocyte differentiation is one particular feature of all mesenchymal cells. Up until now, the peroxysome proliferator-activated receptor (PPAR) subtypes appear to be the keys and essential players capable of inducing and controlling adipocyte differentiation.
View Article and Find Full Text PDF