Publications by authors named "Mamedov T"

Article Synopsis
  • Phosphoglycolate phosphatase (PGPase) is an important enzyme in photosynthetic organisms that helps process phosphoglycolate, a byproduct of Rubisco, potentially affecting the Calvin cycle.
  • Three PGPase genes were isolated, cloned, and overexpressed from a specific organism, and their expression was analyzed under varying ammonium levels.
  • The study found that all three genes produce active PGPases, with two of them being responsive to nitrogen levels and upregulated when ammonium is low, while PGPase presents mainly in three forms across higher plants and algae.
View Article and Find Full Text PDF
Article Synopsis
  • Endolysins from bacteriophages can break down bacterial cell walls and are used in various industries to combat biofilms and infections.
  • The study focused on understanding how single-domain endolysins bind to peptidoglycan, using computational methods like molecular docking and bioinformatics, which are easier compared to experimental methods.
  • The research found that Autodock Vina and the 3D-RISM module supported prior findings on the binding mechanism of a specific endolysin, showing that both computational tools effectively predicted the binding and interaction of endolysins with peptidoglycan.
View Article and Find Full Text PDF

Objective: Development of an AI tool to assess velopharyngeal competence (VPC) in children with cleft palate, with/without cleft lip.

Design: Innovation of an AI tool using retrospective audio recordings and assessments of VPC.

Setting: Two datasets were used.

View Article and Find Full Text PDF

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, belongs to the betacoronavirus genus. This virus has a high mutation rate, which rapidly evolves into new variants with different properties, such as increased transmissibility or immune evasion. Currently, the most prevalent global SARS-CoV-2 variant is Omicron, which is more transmissible than previous variants.

View Article and Find Full Text PDF

The idea of the person re-identification (Re-ID) task is to find the person depicted in the query image among other images obtained from different cameras. Algorithms solving this task have important practical applications, such as illegal action prevention and searching for missing persons through a smart city's video surveillance. In most of the papers devoted to the problem under consideration, the authors propose complex algorithms to achieve a better quality of person Re-ID.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel and highly pathogenic coronavirus that caused an outbreak in Wuhan City, China, in 2019 and then spread rapidly throughout the world. Although several coronavirus disease 2019 (COVID-19) vaccines are currently available for mass immunization, they are less effective against emerging SARS-CoV-2 variants, especially the Omicron (B.1.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs a safe, cost-effective SARS-CoV-2 vaccine as well as therapeutic and antiviral drugs to combat COVID-19. Angiotensin-converting enzyme 2 (ACE2), as a key receptor for SARS-CoV-2 infections, has been proposed as a potential therapeutic tool in patients with COVID-19.

View Article and Find Full Text PDF

The COVID-19 pandemic has put global public health at high risk, rapidly spreading around the world. Although several COVID-19 vaccines are available for mass immunization, the world still urgently needs highly effective, reliable, cost-effective, and safe SARS-CoV-2 coronavirus vaccines, as well as antiviral and therapeutic drugs, to control the COVID-19 pandemic given the emerging variant strains of the virus. Recently, we successfully produced receptor-binding domain (RBD) variants in the plant as promising vaccine candidates against COVID-19 and demonstrated that mice immunized with these antigens elicited a high titer of RBD-specific antibodies with potent neutralizing activity against SARS-CoV-2.

View Article and Find Full Text PDF

The COVID-19 pandemic, caused by SARS-CoV-2, has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs cost-effective and safe SARS-CoV-2 vaccines, antiviral, and therapeutic drugs to control it. In this study, we engineered the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein and produced it in the plant in a glycosylated and deglycosylated form.

View Article and Find Full Text PDF

Pfs48/45 is a leading antigen candidate for a transmission blocking (TB) vaccine. However, efforts to produce affordable, safe and correctly folded full-length Pfs48/45 using different protein expression systems have not produced an antigen with satisfactory TB activity. Pfs48/45 has 16 cysteines involved in disulfide bond formation, and the correct formation is critical for proper folding and induction of TB antibodies.

View Article and Find Full Text PDF

A plant expression platform with eukaryotic post-translational modification (PTM) machinery has many advantages compared to other protein expression systems. This promising technology is useful for the production of a variety of recombinant proteins including, therapeutic proteins, vaccine antigens, native additives, and industrial enzymes. However, plants lack some of the important PTMs, including furin processing, which limits this system for the production of certain mammalian complex proteins of therapeutic value.

View Article and Find Full Text PDF

Aim: To study the relationship between the family structure and characteristics of the response to stress in adolescent addicts.

Material And Methods: The study included 65 patients who used psychoactive substances and 42 healthy controls. A set of psychological methods was used.

View Article and Find Full Text PDF

A plant transient expression system, with eukaryotic post-translational modification machinery, offers superior efficiency, scalability, safety, and lower cost over other expression systems. However, due to aberrant N-glycosylation, this expression system may not be a suitable expression platform for proteins not carrying N-linked glycans in the native hosts. Therefore, it is crucial to develop a strategy to produce target proteins in a non-glycosylated form while preserving their native sequence, conformation and biological activity.

View Article and Find Full Text PDF

Bacillus anthracis has long been considered a potential biological warfare agent, and therefore, there is a need for a safe, low-cost and highly efficient anthrax vaccine with demonstrated long-term stability for mass vaccination in case of an emergency. Many efforts have been made towards developing an anthrax vaccine based on recombinant protective antigen (rPA) of B. anthracis, a key component of the anthrax toxin, produced using different expression systems.

View Article and Find Full Text PDF

In planta production of recombinant proteins, including vaccine antigens and monoclonal antibodies, continues gaining acceptance. With the broadening range of target proteins, the need for vectors with higher performance is increasing. Here, we have developed a single-replicon vector based on beet yellows virus (BYV) that enables co-delivery of two target genes into the same host cell, resulting in transient expression of each target.

View Article and Find Full Text PDF

At present, several eukaryotic expression systems including yeast, insect and mammalian cells and plants are used for the production of recombinant proteins. Proteins with potential N-glycosylation sites are efficiently glycosylated when expressed in these systems. However, the ability of the eukaryotic expression systems to glycosylate may be not desirable for some proteins.

View Article and Find Full Text PDF

Application of tools of molecular biology and genomics is increasingly leading towards the development of recombinant protein-based biologics. As such, it is leading to an increased diversity of targets that have important health applications and require more flexible approaches for expression because of complex post-translational modifications. For example, Plasmodium parasites may have complex post-translationally modified proteins such as Pfs48/45 that do not carry N-linked glycans (Exp.

View Article and Find Full Text PDF

Green algae have a great potential as biofactories for the production of proteins. Chlamydomonas reinhardtii, a representative of eukaryotic microalgae, has been extensively used as a model organism to study light-induced gene expression, chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. However, little is known about the glycosylation machinery and N-linked glycan structures of green algae.

View Article and Find Full Text PDF

Both pulsed- and square-wave, low-intensity ultrasound (US) signals have been reported to impact chondrocyte function and biosynthetic activity. In this study, a low-intensity diffuse ultrasound (LIDUS) signal at 5.0 MHz (0.

View Article and Find Full Text PDF

In an effort to control the surface-mediated activation of thrombin and clot formation, proteins and molecules which mimic the anticoagulant properties of the vascular endothelial lining were immobilized on material surfaces. When immobilized on biomaterial surfaces, thrombomodulin (TM), an endothelial glycoprotein that binds thrombin and activates protein C (PC), was shown to generate activated PC (APC) and delay clot formation. However, TM-mediated activation of PC on biomaterial surfaces was shown to be limited by the transport of PC to the surface, with maximum activation obtained at a surface density of ∼40 fmole TM cm(-2).

View Article and Find Full Text PDF

Malaria is a serious and sometimes fatal mosquito-borne disease caused by a protozoan parasite. Each year, it is estimated that over one million people are killed by malaria, yet the disease is preventable and treatable. Developing vaccines against the parasite is a critical component in the fight against malaria and these vaccines can target different stages of the pathogen's life cycle.

View Article and Find Full Text PDF

Polymerase chain assembly (PCA) is a powerful tool for basic biological research and biotechnology applications. During the last several years, major advances have been made in de novo gene synthesis. However, there is still a need for fast and reproducible methods to automatically purify the synthesized genes.

View Article and Find Full Text PDF

Polymerase chain assembly (PCA) is a technique used to synthesize genes ranging from a few hundred base pairs to many kilobase pairs in length. In traditional PCA, equimolar concentrations of single stranded DNA oligonucleotides are repeatedly hybridized and extended by a polymerase enzyme into longer dsDNA constructs, with relatively few full-length sequences being assembled. Thus, traditional PCA is followed by a second primer-mediated PCR reaction to amplify the desired full-length sequence to useful, detectable quantities.

View Article and Find Full Text PDF

A theoretical analysis is presented with experimental confirmation to conclusively demonstrate the critical role that annealing plays in efficient PCR amplification of GC-rich templates. The analysis is focused on the annealing of primers at alternative binding sites (competitive annealing) and the main result is a quantitative expression of the efficiency (eta) of annealing as a function of temperature (T(A)), annealing period (t(A)), and template composition. The optimal efficiency lies in a narrow region of T(A) and t(A) for GC-rich templates and a much broader region for normal GC templates.

View Article and Find Full Text PDF

The gene encoding the small heat shock protein (sHSP), LeHSP21.5, has been previously cloned from tomato (GenBank accession no. AB026983).

View Article and Find Full Text PDF