Plant growth promoting microbes (PGPMs) play major roles in diverse ecosystems, including atmospheric nitrogen fixation, water uptake, solubilization, and transport of minerals from the soil to the plant. Different PGPMs are proposed as biofertilizers, biostimulants, and/or biocontrol agents to improve plant growth and productivity and thereby to contribute to agricultural sustainability and food security. However, little information exists regarding the use of PGPMs in micropropagation such as the plant tissue culture.
View Article and Find Full Text PDFPhytohormones play a crucial role in regulating plant developmental processes. Among them, ethylene and jasmonate are known to be involved in plant defense responses to a wide range of biotic stresses as their levels increase with pathogen infection. In addition, these two phytohormones have been shown to inhibit plant nodulation in legumes.
View Article and Find Full Text PDFActinorhizal plants are able to establish a symbiotic relationship with bacteria leading to the formation of root nodules. The symbiotic interaction starts with the exchange of symbiotic signals in the soil between the plant and the bacteria. This molecular dialog involves signaling molecules that are responsible for the specific recognition of the plant host and its endosymbiont.
View Article and Find Full Text PDFThe gene family constitutes one of the largest transcription factors (TFs) modulating various biological processes in plants. Although genome-wide analysis of this gene family has been carried out in some species, only three members have been functionally characterized heretofore in sesame ( L.).
View Article and Find Full Text PDFBackground: Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia.
View Article and Find Full Text PDFFrankia sp. strain Allo2 is a member of Frankia lineage Ib, which is able to reinfect plants of the Casuarinaceae family, and exhibits a high level of salt tolerance compared to other isolates. Here, we report the 5.
View Article and Find Full Text PDFFrankiastrain CeD is a member ofFrankialineage Ib that is able to reinfect plants of theCasuarinafamilies. Here, we report a 5.0-Mbp draft genome sequence with a G+C content of 70.
View Article and Find Full Text PDFCowpea (Vigna unguiculata (L.) Walp.) is one of the most important grain legumes in sub-Saharian regions.
View Article and Find Full Text PDFThe MtEnod11 gene from Medicago truncatula is widely used as an early infection-related molecular marker for endosymbiotic associations involving both rhizobia and arbuscular mycorrhizal fungi. In this article, heterologous expression of the MtEnod11 promoter has been studied in two actinorhizal trees, Casuarina glauca and Allocasuarina verticillata. Transgenic C.
View Article and Find Full Text PDFAllocasuarina verticillata is an actinorhizal tree that lives in symbiotic association with a nitrogen fixing actinomycete called Frankia. In the search for promoters that drive strong constitutive expression in this tropical tree, we studied the organ specificity of four different constitutive promoters (CaMV 35S, e35S, e35S-4ocs and UBQ1 from Arabidopsis thaliana) in stably transformed A. verticillata plants.
View Article and Find Full Text PDF