Publications by authors named "Mamdooh Alwetaishi"

Due to the restrictions of the diesel engine emissions and the massive demand of energy, the fossil diesel fuel has been consumed quickly and the resources cannot suffice the demand. Alternative fuels that include bio alcohols, hydrogen and biodiesel can make up the diesel fuel depletion. Biodiesel is convenient for diesel engine operation due to its properties like fossil diesel properties.

View Article and Find Full Text PDF

The increasing demand for cement has substantially affected the environment, and its manufacturing requires substantial energy usage. However, most countries in the world recently encountered a significant energy problem. So, researchers are exploring the use of agricultural and industrial waste resources with cementitious characteristics to minimize cement manufacturing, cut energy consumption, and contribute to environmental protection.

View Article and Find Full Text PDF

The development of eco-friendly materials is a challenging one in the research field. Natural fibers are more accessible, biodegradable, inexpensive, and less dense. They offer fewer health risks and are eco-friendly compared to synthetic fibers.

View Article and Find Full Text PDF

This research study is performed on the self-compacting geopolymer concrete (SCGC) combining coal bottom ash (CBA) and metakaolin (MK) as a substitution for GGBFS alone and combined for analysing the fresh properties (slump flow, V-Funnel, and T50 flow), mechanical characteristics (compressive, splitting tensile and flexural strengths) and durability tests (permeability and sulfate attack test). Though, total 195 SCGC samples were made and tested for 28 days. It has been revealed that the consumption of CBA and MK as a substitution for GGBFS alone and combine in the production of SCGC is decreased the workability of SCGC while mechanical characteristics of SCGC are enhanced by utilizing CBA and MK as a substitution for GGBFS alone and combine up to 10%.

View Article and Find Full Text PDF

Low-temperature combustion paired with the use of carbon-free ammonia and carbon-neutral biofuels is a novel approach for improving performance, reducing greenhouse gases, and reducing regulated emissions. Reactivity-controlled compression ignition (RCCI), a low-temperature combustion technology, dramatically reduces NOx and smoke emissions compared to traditional engines. Ammonia can be projected as a good transit fuel in the journey toward achieving net zero emissions and cleaner energy.

View Article and Find Full Text PDF

In this work, pebbles of higher specific heat than the conventional absorber materials like aluminium or copper are proposed as a absorber in the solar flat plate collector. The proposed collector are integrated into the building design and constructed with masonry. Tests were conducted by varying the operating parameters which influence its performance, like the flow rate of the heat-absorbing medium, and the tilt of the collector using both coated and uncoated pebbles.

View Article and Find Full Text PDF

The rapid depletion of crude oil and environmental degradation necessitate the search for alternative fuel sources for internal combustion engines. Biodiesel is a promising alternative fuel for compression ignition (CI) engines due to its heat content and combustion properties. Biodiesel blends are used in various vehicles and equipment, such as cars, trucks, buses, off-road vehicles, and oil furnaces.

View Article and Find Full Text PDF

Every day, more and more binding materials are being used in the construction industry all over the world. However, Portland cement (PC) is used as a binding material, and its production discharges a high amount of undesirable greenhouse gases into the environment. This research work is done to reduce the amount of greenhouse gases discharged during PC manufacturing and to reduce the cost and energy incurred in the cement manufacturing process by making effective consumption of industrial/agricultural wastes in the construction sector.

View Article and Find Full Text PDF

Pavement design is a long-term structural analysis that is required to distribute traffic loads throughout all road levels. To construct roads for rising traffic volumes while preserving natural resources and materials, a better knowledge of road paving materials is required. The current study focused on the prediction of Marshall stability of asphalt mixes constituted of glass, carbon, and glass-carbon combination fibers to exploit the best potential of the hybrid asphalt mix by applying five machine learning models, i.

View Article and Find Full Text PDF

Concrete is widely used as a building material all over the world, and its use is increasing the demand of cement and sand in the construction industry. However, the limited resources and environmental degradation are driving scientists to develop alternative materials from vast volumes of agro-industrial wastes as a partial replacement for conventional cement. In the manufacture of concrete, cement is a major binding resource.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores phycosynthesis of titanium dioxide nanoparticles (TiO-NPs) using the seaweed Sargassum myriocystum, known for its unique phytochemicals and environmental adaptability.
  • Characterization of the TiO-NPs confirmed their formation, particle morphology (cubic, square, spherical), size (∼50-90 nm), and negative surface charge, along with their antibacterial and anti-biofilm properties against various pathogens.
  • Additionally, the study reveals the larvicidal effects of TiO-NPs on mosquito larvae and their potential for photocatalytic dye degradation, achieving a 92.92% reduction in methylene blue under sunlight in just 45 minutes.
View Article and Find Full Text PDF