Publications by authors named "Mamatha Nagaraj"

Ferroelectric liquid crystals remain of interest for display and spatial light modulators because they exhibit significantly faster optical response times than nematics. However, smectic layers are sensitive to shock-induced flow and are usually permanently displaced once a well-aligned sample is disrupted, rendering such devices inoperable. We introduce a vertical alignment geometry combined with a surface-relief grating to control both the smectic layer and director orientations.

View Article and Find Full Text PDF

Linear alkylbenzene sulfonate (NaLAS) surfactant is often combined with polycarboxylate polymers in detergent formulations. However, the behavior of these aqueous surfactant-polymer systems in the absence of an added electrolyte is unreported. This work investigates the behavior of such systems using polarized light microscopy, small-angle X-ray scattering (SAXS), centrifugation, and H NMR techniques.

View Article and Find Full Text PDF

Liquid crystals are valuable materials for applications in beam steering devices. In this paper, an overview of the use of liquid crystals in the field of adaptive optics specifically for beam steering and lensing devices is presented. The paper introduces the properties of liquid crystals that have made them useful in this field followed by a more detailed discussion of specific liquid crystal devices that act as switchable optical components of refractive and diffractive types.

View Article and Find Full Text PDF

A series of bent-shaped 4-cyanoresorcinol bisterephthalates is reported. Some of these achiral compounds spontaneously form a short-pitch heliconical lamellar liquid-crystalline phase with incommensurate 3-layer pitch and the helix axis parallel to the layer normal. It is observed at the paraelectric-(anti)ferroelectric transition, if it coincides with the transition from random to uniform tilt and with the transition from anticlinic to synclinic tilt correlation of the molecules in the layers of the developing tilted smectic phase.

View Article and Find Full Text PDF

The heliconical twist-bend nematic (N_{TB}) phase is a promising candidate for novel electro-optic and photonic applications. However, the phase generally exists at elevated temperatures and across a narrow temperature interval, limiting its implementation in device fabrication, which would ideally require the liquid crystal phase to be stable at room temperature. Here we report the formation of room-temperature N_{TB} phases by in situ photopolymerization.

View Article and Find Full Text PDF

Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two materials with highly first-order direct transitions from nematic to smectic-C phases.

View Article and Find Full Text PDF

A detailed investigation of the thermal and dielectric properties of a series of binary mixtures exhibiting the nematic (N) and twist-bend nematic (N_{TB}) liquid crystal phases is presented. The mixtures consist of an achiral, dimeric liquid crystal CB7CB, which forms the nematic and twist-bend nematic phases, and a calamitic liquid crystal 5CB, which shows the nematic phase. As the concentration of the calamitic liquid crystal is increased, the transition temperatures decrease linearly, and the width of the nematic phase increases.

View Article and Find Full Text PDF

A new bent-core mesogen combining a 4-cyanoresorcinol unit with two terephthalate based rod-like wings and terminated by two long alkyl chains, was synthesized and investigated by DSC, XRD, optical, electrooptical and dielectric methods. A series of liquid crystalline phases in the unique sequence SmA-SmA(P)-SmCPR-(M1/SmCPα)-SmCsPA-SmCPA-SmCaPA, mainly distinguished by the degree and mode of correlation of tilt and polar order, was observed. The development of polar order is associated with the emergence of a small tilt (<10°).

View Article and Find Full Text PDF

Several series of bent-core mesogens derived from 3,5-diphenyl-1,2,4-oxadiazole with or without lateral groups and with different length terminal chains at both ends, and polycatenar molecules with three to six alkoxy chains are synthesized and their mesomorphic behaviour is investigated by polarizing microscopy, differential scanning calorimetry, X-ray diffraction (XRD), dielectric, electro-optical and second-harmonic generation (SHG) experiments. Most compounds exhibit broad regions of skewed cybotactic nematic (NcybC ) and tilted smectic (SmC) phases with a strong tilt of the aromatic cores (up to 63°), but non-tilted SmA and NcybA phases are also observed for a compound that has only one terminal chain. The XRD patterns of the nematic phases of most of the compounds investigated indicate a 2D periodicity with short correlation length in the magnetically aligned samples.

View Article and Find Full Text PDF

A new liquid crystalline (LC) phase with uniform tilt, local polar order and capability of symmetry breaking is found for a bent-core mesogen combining a 4-cyanoresorcinol unit with two azobenzene wings. The combination of local polar order and long range synclinic tilt in this SmC(s)P(R) phase leads, under special conditions, to macroscopic domains with opposite chirality, though the molecules themselves are achiral.

View Article and Find Full Text PDF

To investigate the origin of the first order molecular kinetics of the most prominent, Debye-type polarization, a detailed dielectric relaxation study of 66.5, 40, and 20 mole% solutions of 5-methyl-2-hexanol in 2-methylpentane (2:1, 0.67:1, and 0.

View Article and Find Full Text PDF