Publications by authors named "Malvar Rosa Ana"

Background: The crosslinking of maize cell wall components, particularly mediated by the formation of ferulic acid dimers or diferulates, has been associated with important crop valorization traits such as increased pest resistance, lower forage digestibility, or reduced bioethanol production. However, these relationships were based on studies performed using diverse unrelated inbred lines and/or populations, so genetic background could interfere on these associations.

Results: In the present research, the success of a pedigree selection program aimed to obtain inbred lines from a common antecessor with contrasting diferulate concentration was evaluated.

View Article and Find Full Text PDF

Introduction: Validations of previously detected quantitative trait loci (QTLs) to assess their reliability are crucial before implementing breeding programs. The objective of this study was to determine the reliability and practical usefulness of previously reported QTLs for resistance to stem tunneling by the Mediterranean stem borer (MSB) and yield. These authors used approximately 600 recombinant inbred lines (RILs) from a multiparent advanced generation intercross (MAGIC) population to map QTL using a genome-wide association study (GWAS) approach.

View Article and Find Full Text PDF

Phenological match/mismatch between cultivated plants and their pest could impact pest infestation dynamics in the field. To explore how such match/mismatch of plant and pest phenologies may interact with plant defense dynamics, we studied the infestation dynamics of maize by one of its main pests in Europe, the European Corn Borer (Ostrinia nubilalis; Lepidoptera: Crambidae). A two-year field experiment was carried out on a collection of 23 maize inbred lines contrasted for their earliness.

View Article and Find Full Text PDF

The ECPGR European Evaluation Network (EVA) for Maize involves genebanks, research institutions, and private breeding companies from nine countries focusing on the valorization of maize genetic resources across Europe. This study describes a diverse collection of 626 local landraces and traditional varieties of maize ( L.) from nine European genebanks, including criteria for selection of the collection and its genetic and phenotypic diversity.

View Article and Find Full Text PDF

poses a threat to worldwide maize production due to its ability to infect maize kernel and synthesize fumonisins that can be accumulated above safety levels for humans and animals. Maize breeding has been proposed as key tool to decrease kernel contamination with fumonisins, but metabolic studies complementary to genomic approaches are necessary to disclose the complexity of maize resistance. An untargeted metabolomic study was proposed using inbreds genetically related but with contrasting levels of resistance in order to uncover pathways implicated in resistance to Fusarium ear rot (FER) and fumonisin contamination in the maize kernel and to look for possible biomarkers.

View Article and Find Full Text PDF

In temperate world-wide regions, maize kernels are often infected with the fumonisin-producing fungus which poses food and feed threats to animals and humans. As maize breeding has been revealed as one of the main tools with which to reduce kernel contamination with fumonisins, a pedigree selection program for increased resistance to Fusarium ear rot (FER), a trait highly correlated with kernel fumonisin content, was initiated in 2014 with the aim of obtaining inbred lines (named EPFUM) with resistance to kernel contamination with fumonisins and adapted to our environmental conditions. The new released EPFUM inbreds, their parental inbreds, hybrids involving crosses of one or two EPFUM inbreds, as well as commercial hybrids were evaluated in the current study.

View Article and Find Full Text PDF

Introduction: The study of yield and resistance/tolerance to pest are related traits fundamental for maize breeding programs. Genomic selection (GS), which uses all marker information to calculate genomic breeding values, is presented as an emerging alternative to phenotypic and marker-assisted selections for improving complex traits controlled by many genes with small effects. Therefore, although phenotypic selection (PS) has been effective for increasing resistance and yield under high infestation with maize stem borers, higher genetic gains are expected to be obtained through GS based on the complex architecture of both traits.

View Article and Find Full Text PDF

Senescence is a programmed process that involves the destruction of the photosynthesis apparatus and the relocation of nutrients to the grain. Identifying senescence-associated genes is essential to adapting varieties for the duration of the cultivation cycle. A genome-wide association study (GWAS) was performed using 400 inbred maize lines with 156,164 SNPs to study the genetic architecture of senescence-related traits and their relationship with agronomic traits.

View Article and Find Full Text PDF

is a causal agent of maize ear rot and produces fumonisins, which are mycotoxins that are toxic to animals and humans. In this study, quantitative trait loci (QTLs) and bulk-segregant RNA-seq approaches were used to uncover genomic regions and pathways involved in resistance to ear rot (FER) and to fumonisin accumulation in maize kernels. Genomic regions at bins 4.

View Article and Find Full Text PDF

Background: Captures and seasonal abundance of Xylotrechus arvicola (Coleoptera: Cerambycidae) in relation to climatic factors were studied in vineyards between the years 2013 and 2020. Insects captures from vine wood in two Vitis vinifera varieties were evaluated every year by counting the number of insects captured with CROSSTRAP®. The captured insects were grouped (by sex and total) into ranges of 10 days and compared to climatic data (daily average, temperature and rainfall) for each cultivar and year.

View Article and Find Full Text PDF

Maize stalks support leaves and reproductive structures and functionally support water and nutrient transport; besides, their anatomical and biochemical characteristics have been described as a plant defense against stress, also impacting economically important applications. In this study, we evaluated agronomical and stem description traits in a subset of maize inbred lines that showed variability for cell wall composition in the internodes. Overall, a great proportion of lignin subunit G and a low concentration of -coumaric acid and lignin subunit S are beneficial for greater rind puncture resistance and taller plants, with a greater biomass yield.

View Article and Find Full Text PDF

Maize ( L.) is one of the major crops of the world for feed, food, and industrial uses. It was originated in Central America and introduced into Europe and other continents after Columbus trips at the end of the 15 century.

View Article and Find Full Text PDF

Maize kernel is exposed to several fungal species, most notably Fusarium verticillioides, which can contaminate maize kernels with fumonisins. In an effort to increase genetic gains and avoid the laborious tasks of conventional breeding, the use of marker-assisted selection or genomic selection programs was proposed. To this end, in the present study a Genome Wide Association Study (GWAS) was performed on 339 RILs of a Multiparental Advanced Generation InterCross (MAGIC) population that had previously been used to locate Quantitative Trait Locus (QTL) for resistance to Fusarium Ear Rot (FER).

View Article and Find Full Text PDF

Background: Besides the use of maize grain as food and feed, maize stover can be a profitable by-product for cellulosic ethanol production, whereas the whole plant can be used for silage production. However, yield is reduced by pest damages, stem corn borers being one of the most important yield constraints. Overall, cell wall composition is key in determining the quality of maize biomass, as well as pest resistance.

View Article and Find Full Text PDF

Limited attention has been paid to maize ( L.) resistance induced by corn borer damage, although evidence shows that induced defenses have lower resource allocation costs than constitutive defenses. Maize responses to short- and long-term feeding by the Mediterranean corn borer (MCB, ) have been previously studied, but the suggested differences between responses could be due to experimental differences.

View Article and Find Full Text PDF

Food contamination with mycotoxins is a worldwide concern, because these toxins produced by several fungal species have detrimental effects on animal and/or human health. In maize, fumonisins are among the toxins with the highest threatening potential because they are mainly produced by , which is distributed worldwide. Plant breeding has emerged as an effective and environmentally safe method to reduce fumonisin levels in maize kernels, but although phenotypic selection has proved effective for improving resistance to fumonisin contamination, further resources should be mobilized to meet farmers' needs.

View Article and Find Full Text PDF

Background: Corn borers constitute an important pest of maize around the world; in particular Sesamia nonagrioides Lefèbvre, named Mediterranean corn borer (MCB), causes important losses in Southern Europe. Methods of selection can be combined with transgenic approaches to increase the efficiency and durability of the resistance to corn borers. Previous studies of the genetic factors involved in resistance to MCB have been carried out using bi-parental populations that have low resolution or using association inbred panels that have a low power to detect rare alleles.

View Article and Find Full Text PDF

Plant long-term response against chewing insects could become stronger than initial reactions and even turn into systemic. The objectives of the present study were 1) to evaluate whether the long-running attack to the stem by corn borers can improve the stem antibiotic properties; 2) to check whether hydroxycinnamic acids could be involved in this antibiotic response; 3) and to check whether elicitation by Sesamia nonagrioides Lef. (Lepidoptera: Noctuidae) regurgitant could activate long-term plant responses.

View Article and Find Full Text PDF

Background: Sesamia nonagrioides Lefebvere (Mediterranean corn borer, MCB) is the main pest of maize in the Mediterranean area. QTL for MCB stalk tunneling and grain yield under high MCB infestation had been located at bin 8.03-8.

View Article and Find Full Text PDF

Background: Breeding for cold tolerance in maize promises to allow increasing growth area and production in temperate zones. The objective of this research was to conduct genome-wide association analyses (GWAS) in temperate maize inbred lines and to find strategies for pyramiding genes for cold tolerance. Two panels of 306 dent and 292 European flint maize inbred lines were evaluated per se and in testcrosses under cold and control conditions in a growth chamber.

View Article and Find Full Text PDF

Previous results suggest a relationship between maize hydroxycinnamate concentration in the pith tissues and resistance to stem tunneling by Mediterranean corn borer (MCB, Sesamia nonagrioides Lef.) larvae. This study performs a more precise experiment, mapping an F2 derived from the cross between two inbreds with contrasting levels for hydroxycinnamates EP125 × PB130.

View Article and Find Full Text PDF

Background: A QTL mapping study for maize resistance to the Mediterranean corn borer (MCB) was performed with a RIL population derived from the cross B73 × CML103. To develop commercial inbreds of maize resistant to the MCB for use in Europe, it would be useful to transfer resistance from tropical germplasm like the subtropical inbred CML103 to temperate lines. The inbred B73 was chosen as representative of the Stiff Stock heterotic group, a major heterotic group used in hybrid grown in both North American and Europe.

View Article and Find Full Text PDF

Background: Corn borers are the primary maize pest; their feeding on the pith results in stem damage and yield losses. In this study, we performed a genome-wide association study (GWAS) to identify SNPs associated with resistance to Mediterranean corn borer in a maize diversity panel using a set of more than 240,000 SNPs.

Results: Twenty five SNPs were significantly associated with three resistance traits: 10 were significantly associated with tunnel length, 4 with stem damage, and 11 with kernel resistance.

View Article and Find Full Text PDF

In northwestern Spain, where weather is rainy and mild throughout the year, Fusarium verticillioides is the most prevalent fungus in kernels and a significant risk of fumonisin contamination has been exposed. In this study, detailed information about environmental and maize genotypic factors affecting F. verticillioides infection, fungal growth and fumonisin content in maize kernels was obtained in order to establish control points to reduce fumonisin contamination.

View Article and Find Full Text PDF