Background Asthma affects millions of patients worldwide. The Global Initiative for Asthma (GINA) emphasizes the need for individualized treatment based on symptoms and risk of exacerbations. The Asthma Control Test (ACT) is a well-validated tool and considered standard-of-care for assessing asthma control.
View Article and Find Full Text PDFBackground: There are two approaches for endobronchial ultrasound (EBUS) training: the traditional apprenticeship approach involving 'see one, do one, teach one', and the computer-based simulation approach. In the traditional approach, the trainee learns under direct supervision from an expert preceptor while performing on patients. In the latter approach, trainees use a high-fidelity bronchoscopy simulator, undertake a skills assessment exam (Endobronchial Ultrasound Skills and Task Assessment Tool (EBUS-STAT)), and receive supervised patient-based training from experienced clinicians.
View Article and Find Full Text PDFThe use of carbon nanotubes has increased in the past few decades. Carbon nanotubes are implicated in the pathogenesis of pulmonary sarcoidosis, a chronic granulomatous inflammatory condition. We developed a murine model of chronic granulomatous inflammation using multiwall carbon nanotubes (MWCNT) to investigate mechanisms of granuloma formation.
View Article and Find Full Text PDFSarcoidosis is a chronic disease with unknown etiology and pathophysiology, characterized by granuloma formation. Matrix Metalloproteinase-12 (MMP12) is an elastase implicated in active granulomatous sarcoidosis. Previously, we reported that oropharyngeal instillation of multiwall carbon nanotubes (MWCNT) into C57Bl/6 mice induced sarcoid-like granulomas and upregulation of MMP12.
View Article and Find Full Text PDFPoorly soluble environmental antigens, including carbon pollutants, are thought to play a role in the incidence of human sarcoidosis, a chronic inflammatory granulomatous disease of unknown causation. Currently, engineered carbon products such as multiwall carbon nanotubes (MWCNT) are manufactured commercially and have been shown to elicit acute and chronic inflammatory responses in experimental animals, including the production of granulomas or fibrosis. Several years ago, we hypothesized that constructing an experimental model of chronic granulomatosis resembling that associated with sarcoidosis might be achieved by oropharyngeal instillation of MWCNT into mice.
View Article and Find Full Text PDFBackground: Sarcoidosis is a chronic inflammatory disease of unknown cause characterized by granuloma formation. Mechanisms for chronic persistence of granulomas are unknown. Matrix Metalloproteinase-12 (MMP12) degrades extracellular matrix elastin and enables infiltration of immune cells responsible for inflammation and granuloma formation.
View Article and Find Full Text PDFHuman exposure to carbon nanotubes (CNT) has been associated with the development of pulmonary sarcoid-like granulomatous disease. Our previous studies demonstrated that multi-walled carbon nanotubes (MWCNT) induced chronic pulmonary granulomatous inflammation in mice. Granuloma formation was accompanied by decreased peroxisome proliferator-activated receptor gamma (PPARγ) and disrupted intracellular lipid homeostasis in alveolar macrophages.
View Article and Find Full Text PDFBackground: The pathological consequences of interaction between environmental carbon pollutants and microbial antigens have not been fully explored. We developed a murine model of multi-wall carbon nanotube (MWCNT)-elicited granulomatous disease which bears a striking resemblance to sarcoidosis, a human granulomatous disease. Because of reports describing lymphocyte reactivity to mycobacterial antigens in sarcoidosis patients, we hypothesized that addition of mycobacterial antigen (ESAT-6) to MWCNT might elicit activation in T cells.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2019
Pulmonary granuloma formation is a complex and poorly understood response to inhaled pathogens and particulate matter. To explore the mechanisms of pulmonary granuloma formation and maintenance, our laboratory has developed a multiwall carbon nanotube (MWCNT)-induced murine model of chronic granulomatous inflammation. We have demonstrated that the MWCNT model closely mimics pulmonary sarcoidosis pathophysiology, including the deficiency of alveolar macrophage ATP-binding cassette (ABC) lipid transporters ABCA1 and ABCG1.
View Article and Find Full Text PDFWe established a murine model of multiwall carbon nanotube (MWCNT)-elicited chronic granulomatous disease that bears similarities to human sarcoidosis pathology, including alveolar macrophage deficiency of peroxisome proliferator-activated receptor γ (PPARγ). Because lymphocyte reactivity to mycobacterial antigens has been reported in sarcoidosis, we hypothesized that addition of mycobacterial ESAT-6 (early secreted antigenic target protein 6) to MWCNT might exacerbate pulmonary granulomatous pathology. MWCNTs with or without ESAT-6 peptide 14 were instilled by the oropharyngeal route into macrophage-specific PPARγ-knockout (KO) or wild-type mice.
View Article and Find Full Text PDFBackground: It has been over a decade since a comprehensive study has been published that has examined sarcoidosis deaths at the national level. The purpose of this study was to analyze sarcoidosis as the underlying cause of death using current national death certificate data. Results from this project can be used to evaluate and compare trends of sarcoidosis reported deaths across the U.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2018
Peroxisome proliferator activated receptor gamma (PPARγ), a ligand activated nuclear transcription factor, is constitutively expressed in alveolar macrophages of healthy individuals. PPARγ deficiencies have been noted in several lung diseases including the alveolar macrophages of pulmonary sarcoidosis patients. We have previously described a murine model of multiwall carbon nanotubes (MWCNT) induced pulmonary granulomatous inflammation which bears striking similarities to pulmonary sarcoidosis, including the deficiency of alveolar macrophage PPARγ.
View Article and Find Full Text PDFMohan A, Malur A, McPeek M, Barna BP, Schnapp LM, Thomassen MJ, Gharib SA. Transcriptional survey of alveolar macrophages in a murine model of chronic granulomatous inflammation reveals common themes with human sarcoidosis. Am J Physiol Lung Cell Mol Physiol 314: L617-L625, 2018.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
October 2017
Maintenance of tissue-specific organ lipid compositions characterizes mammalian lipid homeostasis. The lungs and liver synthesize mixed phosphatidylcholine (PC) molecular species that are subsequently tailored for function. The lungs progressively enrich disaturated PC directed to lamellar body surfactant stores before secretion.
View Article and Find Full Text PDFBackground: Sarcoidosis is a multisystem immuno-inflammatory disorder of unknown etiology that most commonly involves the lungs. We hypothesized that an unbiased approach to identify pathways activated in bronchoalveolar lavage (BAL) cells can shed light on the pathogenesis of this complex disease.
Methods: We recruited 15 patients with various stages of sarcoidosis and 12 healthy controls.
Recent studies suggest additive effects of environmental pollutants and microbial antigens on respiratory disease. We established a granuloma model in which instilled multiwall carbon nanotubes (MWCNT) elicit granulomatous pathology. We hypothesized that mycobacterial antigen ESAT-6, a T cell activator associated with tuberculosis and sarcoidosis, might alter pathology.
View Article and Find Full Text PDFWe established a murine model of multiwall carbon nanotube (MWCNT)-induced chronic granulomatous disease, which resembles human sarcoidosis pathology. At 60 days after oropharyngeal MWCNT instillation, bronchoalveolar lavage (BAL) cells from wild-type mice exhibit an M1 phenotype with elevated proinflammatory cytokines and reduced peroxisome proliferator-activated receptor γ (PPARγ)-characteristics also present in human sarcoidosis. Based upon MWCNT-associated PPARγ deficiency, we hypothesized that the PPARγ target gene, ATP-binding cassette (ABC) G1, a lipid transporter with antiinflammatory properties, might also be repressed.
View Article and Find Full Text PDFSarcoidosis, a chronic granulomatous disease of unknown cause, has been linked to several environmental risk factors, among which are some that may favor carbon nanotube formation. Using gene array data, we initially observed that bronchoalveolar lavage (BAL) cells from sarcoidosis patients displayed elevated mRNA of the transcription factor, Twist1, among many M1-associated genes compared to healthy controls. Based on this observation we hypothesized that Twist1 mRNA and protein expression might become elevated in alveolar macrophages from animals bearing granulomas induced by carbon nanotube instillation.
View Article and Find Full Text PDFBackground: Activin A is a pleiotrophic regulatory cytokine, the ablation of which is neonatal lethal. Healthy human alveolar macrophages (AMs) constitutively express activin A, but AMs of patients with pulmonary alveolar proteinosis (PAP) are deficient in activin A. PAP is an autoimmune lung disease characterized by neutralizing autoantibodies to Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF).
View Article and Find Full Text PDFBackground: Although granulomatous inflammation is a central feature of many disease processes, cellular mechanisms of granuloma formation and persistence are poorly understood. Carbon nanoparticles, which can be products of manufacture or the environment, have been associated with granulomatous disease. This paper utilizes a previously described carbon nanoparticle granuloma model to address the issue of whether peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear transcription factor and negative regulator of inflammatory cytokines might play a role in granulomatous lung disease.
View Article and Find Full Text PDFBackground: Dysfunctional immune responses characterize sarcoidosis, but the status of cathelicidin, a potent immunoregulatory and antimicrobial molecule, has not been established in clinical disease activity.
Methods: Alveolar macrophage cathelicidin expression was determined in biopsy-proven sarcoidosis patients classified clinically as 'severe' (requiring systemic treatment) or 'non-severe' (never requiring treatment). Bronchoalveolar lavage (BAL) cells from sarcoidosis patients and healthy controls were analyzed for mRNA expression of cathelicidin, vitamin D receptor (VDR) and the VDR coactivator steroid receptor coactivator-3 (SRC3) by quantitative PCR.
Rationale: Pulmonary Alveolar Proteinosis (PAP) patients exhibit an acquired deficiency of biologically active granulocyte-macrophage colony stimulating factor (GM-CSF) attributable to GM-CSF specific autoantibodies. PAP alveolar macrophages are foamy, lipid-filled cells with impaired surfactant clearance and markedly reduced expression of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) and the PPARγ-regulated ATP binding cassette (ABC) lipid transporter, ABCG1. An open label proof of concept Phase II clinical trial was conducted in PAP patients using rituximab, a chimeric murine-human monoclonal antibody directed against B lymphocyte specific antigen CD20.
View Article and Find Full Text PDFHuman parainfluenza virus type 3 (HPIV 3) encodes a multifunctional C protein that is capable of inhibiting viral replication and counteracting the host interferon (IFN) signaling pathway. We recently demonstrated that the C protein is phosphorylated both in vitro and in vivo and mutations within the phosphorylation sites exhibit differential inhibitory activities in vitro. In this study, we report for the first time the successful recovery of mutant HPIV 3 viruses containing mutations within the C protein.
View Article and Find Full Text PDF